--- license: mit --- **Descrición do Modelo** Modelo feito con OpenNMT para o par español-galego utilizando unha arquitectura transformer. **Como utilizar** + Abrir terminal bash + Instalar [Python 3.9](https://www.python.org/downloads/release/python-390/) + Instalar [Open NMT toolkit v.2.2](https://github.com/OpenNMT/OpenNMT-py) + Traducir un input_text utilizando o modelo NOS-MT-es-gl co seguinte comando: ```bash onmt_translate -src input_text -model NOS-MT-es-gl -output ./output_file.txt -replace_unk -phrase_table phrase_table-es-gl.txt -gpu 0 ``` + O resultado da tradución estará no PATH indicado no flag -output. **Adestramento** Datos utilizados para o adestramento Auténticos e Sintéticos (Transliteração)[Colocar Paper] **Procedemento de adestramento** Tokenization feita co tokenizador de linguakit https://github.com/citiususc/Linguakit BPE Modelos proprios **Hiperparámetros** Colocar o yaml para cada um dos pares **Avaliación** A avalación dos modelos é feita cunha mistura de tests desenvolvidos internamente (gold1, gold2, test-suite) con outros datasets disponíbeis en galego (Flores). | GOLD 1 | GOLD 2 | FLORES | TEST-SUITE| | ------------- |:-------------:| -------:|----------:| | 79.6 | 43.3 | 21.8 | 74.3 | **Información adicional** Licensing information Apache License, Version 2.0 **Financiamento** This research was funded by the project "Nós: Galician in the society and economy of artificial intelligence", agreement between Xunta de Galicia and University of Santiago de Compostela, and grant ED431G2019/04 by the Galician Ministry of Education, University and Professional Training, and the European Regional Development Fund (ERDF/FEDER program), and Groups of Reference: ED431C 2020/21. **Citation Information** @article{garriga2022catalan, title={}, author={}, year={2023}, url={} }