--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - recall - precision - f1 model-index: - name: deberta-v3-base-prompt-injection-v1 results: [] --- # deberta-v3-base-prompt-injection-v1 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0010 - Accuracy: 0.9999 - Recall: 0.9997 - Precision: 0.9998 - F1: 0.9998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0038 | 1.0 | 36130 | 0.0026 | 0.9998 | 0.9994 | 0.9992 | 0.9993 | | 0.0001 | 2.0 | 72260 | 0.0021 | 0.9998 | 0.9997 | 0.9989 | 0.9993 | | 0.0 | 3.0 | 108390 | 0.0015 | 0.9999 | 0.9997 | 0.9995 | 0.9996 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0