--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-base-patch4-window7-224-in22k-finetuned_swinv1-all-classes-autotags-latest results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9544554455445544 --- # swin-base-patch4-window7-224-in22k-finetuned_swinv1-all-classes-autotags-latest This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1665 - Accuracy: 0.9545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8729 | 1.0 | 63 | 0.6445 | 0.7921 | | 0.4323 | 2.0 | 126 | 0.3358 | 0.8960 | | 0.3421 | 3.0 | 189 | 0.2650 | 0.9178 | | 0.198 | 4.0 | 252 | 0.2080 | 0.9327 | | 0.1239 | 5.0 | 315 | 0.1797 | 0.9446 | | 0.1053 | 6.0 | 378 | 0.1625 | 0.9525 | | 0.1109 | 7.0 | 441 | 0.1712 | 0.9505 | | 0.0411 | 8.0 | 504 | 0.1850 | 0.9436 | | 0.0615 | 9.0 | 567 | 0.1695 | 0.9554 | | 0.0407 | 10.0 | 630 | 0.1665 | 0.9545 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu117 - Datasets 2.11.0 - Tokenizers 0.13.2