tokenizer: _component_: torchtune.models.mistral.mistral_tokenizer path: /tmp/Mistral-7B-Instruct-v0.2/tokenizer.model dataset: _component_: torchtune.datasets.instruct_dataset source: prithviraj-maurya/legalbench-entire template: AlpacaInstructTemplate column_map: instruction: instruction input: question output: answer max_seq_len: 256 train_on_input: true split: train seed: null shuffle: true model: _component_: torchtune.models.mistral.qlora_mistral_7b lora_attn_modules: - q_proj - k_proj - v_proj apply_lora_to_mlp: true apply_lora_to_output: false lora_rank: 64 lora_alpha: 16 checkpointer: _component_: torchtune.utils.FullModelHFCheckpointer checkpoint_dir: /tmp/Mistral-7B-Instruct-v0.2 checkpoint_files: - pytorch_model-00001-of-00003.bin - pytorch_model-00002-of-00003.bin - pytorch_model-00003-of-00003.bin recipe_checkpoint: null output_dir: /tmp/Mistral-7B-Instruct-v0.2 model_type: MISTRAL resume_from_checkpoint: false optimizer: _component_: torch.optim.AdamW lr: 2.0e-05 lr_scheduler: _component_: torchtune.modules.get_cosine_schedule_with_warmup num_warmup_steps: 100 loss: _component_: torch.nn.CrossEntropyLoss batch_size: 4 epochs: 10 max_steps_per_epoch: 100000 gradient_accumulation_steps: 4 compile: false device: cuda enable_activation_checkpointing: true dtype: fp32 output_dir: /logs/mistral_7b_qlora_single_device_finetune metric_logger: _component_: torchtune.utils.metric_logging.WandBLogger project: torchtune log_every_n_steps: 10 profiler: _component_: torchtune.utils.profiler enabled: false output_dir: /tmp/alpaca-llama2-finetune/torchtune_perf_tracing.json