--- license: apache-2.0 pipeline_tag: image-classification library_name: transformers tags: - deep-fake - detection - Image - SigLIP2 base_model: - google/siglip2-base-patch16-512 datasets: - prithivMLmods/OpenDeepfake-Preview language: - en --- ![DF.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/du5WF3GmRq5czAvXyuggx.png) # deepfake-detector-model-v1 > `deepfake-detector-model-v1` is a vision-language encoder model fine-tuned from google/siglip-base-patch16-512 for binary deepfake image classification. It is trained to detect whether an image is real or generated using synthetic media techniques. The model uses the `SiglipForImageClassification` architecture. > [!warning] Experimental ```py Classification Report: precision recall f1-score support Fake 0.9718 0.9155 0.9428 10000 Real 0.9201 0.9734 0.9460 9999 accuracy 0.9444 19999 macro avg 0.9459 0.9444 0.9444 19999 weighted avg 0.9459 0.9444 0.9444 19999 ``` ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/KIQGQnaSxrY1F2TQNpRLR.png) --- ## Label Space: 2 Classes The model classifies an image as one of the following: ``` Class 0: fake Class 1: real ``` --- ## Install Dependencies ```bash pip install -q transformers torch pillow gradio hf_xet ``` --- ## Inference Code ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/deepfake-detector-model-v1" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) # Updated label mapping id2label = { "0": "fake", "1": "real" } def classify_image(image): image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() prediction = { id2label[str(i)]: round(probs[i], 3) for i in range(len(probs)) } return prediction # Gradio Interface iface = gr.Interface( fn=classify_image, inputs=gr.Image(type="numpy"), outputs=gr.Label(num_top_classes=2, label="Deepfake Classification"), title="deepfake-detector-model", description="Upload an image to classify whether it is real or fake using a deepfake detection model." ) if __name__ == "__main__": iface.launch() ``` --- ## Intended Use `deepfake-detector-model` is designed for: * **Deepfake Detection** – Accurately identify fake images generated by AI. * **Media Authentication** – Verify the authenticity of digital visual content. * **Content Moderation** – Assist in filtering synthetic media in online platforms. * **Forensic Analysis** – Support digital forensics by detecting manipulated visual data. * **Security Applications** – Integrate into surveillance systems for authenticity verification.