--- base_model: pritamdeka/assamese-bert-nli-v2 datasets: [] language: [] library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:5749 - loss:CosineSimilarityLoss widget: - source_sentence: আমি "... comoving মহাজাগতিক বিশ্ৰাম ফ্ৰেমৰ তুলনাত ... সিংহ নক্ষত্ৰমণ্ডলৰ ফালে কিছু 371 কিলোমিটাৰ প্ৰতি ছেকেণ্ডত" আগবাঢ়িছো. sentences: - বাস্কেটবল খেলুৱৈগৰাকীয়ে নিজৰ দলৰ হৈ পইণ্ট লাভ কৰিবলৈ ওলাইছে। - আন কোনো বস্তুৰ লগত আপেক্ষিক নহোৱা কোনো ‘ষ্টিল’ নাই। - এজনী ছোৱালীয়ে বতাহ বাদ্যযন্ত্ৰ বজায়। - source_sentence: চাৰিটা ল’ৰা-ছোৱালীয়ে ভঁৰালৰ জীৱ-জন্তুবোৰলৈ চাই আছে। sentences: - ডাইনিং টেবুল এখনৰ চাৰিওফালে বৃদ্ধৰ দল এটাই পোজ দিছে। - বিকিনি পিন্ধা চাৰিগৰাকী মহিলাই বিলত ভলীবল খেলি আছে। - ল’ৰা-ছোৱালীয়ে ভেড়া চাই। - source_sentence: ডালত বহি থকা দুটা টান ঈগল। sentences: - জাতৰ জেব্ৰা ডানিঅ’ অত্যন্ত কঠোৰ মাছ, ইহঁতক হত্যা কৰাটো প্ৰায় কঠিন। - এটা ডালত দুটা ঈগল বহি আছে। - নূন্যতম মজুৰিৰ আইনসমূহে কম দক্ষ, কম উৎপাদনশীল লোকক আটাইতকৈ বেছি আঘাত দিয়ে। - source_sentence: '"মই আচলতে যি বিচাৰিছো সেয়া হৈছে মুছলমান জনসংখ্যাৰ এটা অনুমান..." @ThanosK আৰু @T.E.D., এটা সামগ্ৰিক, সাধাৰণ জনসংখ্যাৰ অনুমান f.e.' sentences: - এগৰাকী মহিলাই সেউজীয়া পিঁয়াজ কাটি আছে। - তলত দিয়া কথাখিনি মোৰ কুকুৰ কাণৰ দৰে কপিৰ পৰা লোৱা হৈছে নিউ পেংগুইন এটলাছ অৱ মেডিভেল হিষ্ট্ৰীৰ। - আমাৰ দৰে সৌৰজগতৰ কোনো তাৰকাৰাজ্যৰ বাহিৰত থকাটো সম্ভৱ হ’ব পাৰে। - source_sentence: ইণ্টাৰনেট কেমেৰাৰ জৰিয়তে এগৰাকী ছোৱালীৰ লগত কথা পাতিলে মানুহজনে। sentences: - গছৰ শাৰী এটাৰ সন্মুখত পথাৰত ভেড়া চৰিছে। - এজন মানুহে গীটাৰ বজাই আছে। - ৱেবকেমৰ জৰিয়তে এগৰাকী ছোৱালীৰ সৈতে কথা পাতিছে এজন কিশোৰে। model-index: - name: SentenceTransformer based on pritamdeka/assamese-bert-nli-v2 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: pritamdeka/stsb assamese translated dev type: pritamdeka/stsb-assamese-translated-dev metrics: - type: pearson_cosine value: 0.8582086169969396 name: Pearson Cosine - type: spearman_cosine value: 0.8558833817052474 name: Spearman Cosine - type: pearson_manhattan value: 0.8402288134127139 name: Pearson Manhattan - type: spearman_manhattan value: 0.8466669319881411 name: Spearman Manhattan - type: pearson_euclidean value: 0.8401702610820984 name: Pearson Euclidean - type: spearman_euclidean value: 0.846937443225358 name: Spearman Euclidean - type: pearson_dot value: 0.8293854931734366 name: Pearson Dot - type: spearman_dot value: 0.8279065905764471 name: Spearman Dot - type: pearson_max value: 0.8582086169969396 name: Pearson Max - type: spearman_max value: 0.8558833817052474 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: pritamdeka/stsb assamese translated test type: pritamdeka/stsb-assamese-translated-test metrics: - type: pearson_cosine value: 0.8231106499789409 name: Pearson Cosine - type: spearman_cosine value: 0.8235370017309012 name: Spearman Cosine - type: pearson_manhattan value: 0.8131384280231726 name: Pearson Manhattan - type: spearman_manhattan value: 0.817044158823682 name: Spearman Manhattan - type: pearson_euclidean value: 0.8132779879142208 name: Pearson Euclidean - type: spearman_euclidean value: 0.8170404249477559 name: Spearman Euclidean - type: pearson_dot value: 0.7896666837864712 name: Pearson Dot - type: spearman_dot value: 0.7870703093898731 name: Spearman Dot - type: pearson_max value: 0.8231106499789409 name: Pearson Max - type: spearman_max value: 0.8235370017309012 name: Spearman Max --- # SentenceTransformer based on pritamdeka/assamese-bert-nli-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [pritamdeka/assamese-bert-nli-v2](https://huggingface.co/pritamdeka/assamese-bert-nli-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [pritamdeka/assamese-bert-nli-v2](https://huggingface.co/pritamdeka/assamese-bert-nli-v2) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("pritamdeka/assamese-bert-nli-v2-assamese-sts") # Run inference sentences = [ 'ইণ্টাৰনেট কেমেৰাৰ জৰিয়তে এগৰাকী ছোৱালীৰ লগত কথা পাতিলে মানুহজনে।', 'ৱেবকেমৰ জৰিয়তে এগৰাকী ছোৱালীৰ সৈতে কথা পাতিছে এজন কিশোৰে।', 'এজন মানুহে গীটাৰ বজাই আছে।', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `pritamdeka/stsb-assamese-translated-dev` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8582 | | **spearman_cosine** | **0.8559** | | pearson_manhattan | 0.8402 | | spearman_manhattan | 0.8467 | | pearson_euclidean | 0.8402 | | spearman_euclidean | 0.8469 | | pearson_dot | 0.8294 | | spearman_dot | 0.8279 | | pearson_max | 0.8582 | | spearman_max | 0.8559 | #### Semantic Similarity * Dataset: `pritamdeka/stsb-assamese-translated-test` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8231 | | **spearman_cosine** | **0.8235** | | pearson_manhattan | 0.8131 | | spearman_manhattan | 0.817 | | pearson_euclidean | 0.8133 | | spearman_euclidean | 0.817 | | pearson_dot | 0.7897 | | spearman_dot | 0.7871 | | pearson_max | 0.8231 | | spearman_max | 0.8235 | ## Training Details ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 4 - `warmup_ratio`: 0.1 - `fp16`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | pritamdeka/stsb-assamese-translated-dev_spearman_cosine | pritamdeka/stsb-assamese-translated-test_spearman_cosine | |:------:|:----:|:-------------:|:------:|:-------------------------------------------------------:|:--------------------------------------------------------:| | 0.2778 | 100 | 0.0316 | 0.0274 | 0.8415 | - | | 0.5556 | 200 | 0.0306 | 0.0280 | 0.8392 | - | | 0.8333 | 300 | 0.0282 | 0.0280 | 0.8462 | - | | 1.1111 | 400 | 0.0208 | 0.0277 | 0.8482 | - | | 1.3889 | 500 | 0.0148 | 0.0271 | 0.8494 | - | | 1.6667 | 600 | 0.0136 | 0.0259 | 0.8503 | - | | 1.9444 | 700 | 0.0137 | 0.0259 | 0.8525 | - | | 2.2222 | 800 | 0.0089 | 0.0262 | 0.8519 | - | | 2.5 | 900 | 0.0074 | 0.0255 | 0.8551 | - | | 2.7778 | 1000 | 0.0071 | 0.0256 | 0.8544 | - | | 3.0556 | 1100 | 0.0068 | 0.0258 | 0.8558 | - | | 3.3333 | 1200 | 0.005 | 0.0253 | 0.8565 | - | | 3.6111 | 1300 | 0.0046 | 0.0259 | 0.8547 | - | | 3.8889 | 1400 | 0.0046 | 0.0257 | 0.8559 | - | | 4.0 | 1440 | - | - | - | 0.8235 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.42.4 - PyTorch: 2.3.1+cu121 - Accelerate: 0.32.1 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```