--- license: mit tags: - generated_from_trainer datasets: - pritamdeka/cord-19-abstract metrics: - accuracy base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext model-index: - name: pubmedbert-abstract-cord19 results: - task: type: fill-mask name: Masked Language Modeling dataset: name: pritamdeka/cord-19-abstract type: pritamdeka/cord-19-abstract args: fulltext metrics: - type: accuracy value: 0.7246798699728464 name: Accuracy --- # PubMedBert-abstract-cord19-v2 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the [pritamdeka/cord-19-abstract](https://huggingface.co/datasets/pritamdeka/cord-19-abstract) dataset. It achieves the following results on the evaluation set: - Loss: 1.2371 - Accuracy: 0.7247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 4.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.27 | 0.53 | 5000 | 1.2425 | 0.7236 | | 1.2634 | 1.06 | 10000 | 1.3123 | 0.7141 | | 1.3041 | 1.59 | 15000 | 1.3583 | 0.7072 | | 1.3829 | 2.12 | 20000 | 1.3590 | 0.7121 | | 1.3069 | 2.65 | 25000 | 1.3506 | 0.7154 | | 1.2921 | 3.18 | 30000 | 1.3448 | 0.7160 | | 1.2731 | 3.7 | 35000 | 1.3375 | 0.7178 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0