--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: best_model results: [] --- # best_model This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2833 - Accuracy: 0.8942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3604 | 0.14 | 5000 | 0.3162 | 0.8821 | | 0.3326 | 0.29 | 10000 | 0.3112 | 0.8843 | | 0.3293 | 0.43 | 15000 | 0.3044 | 0.8870 | | 0.3246 | 0.58 | 20000 | 0.3040 | 0.8871 | | 0.32 | 0.72 | 25000 | 0.2969 | 0.8888 | | 0.3143 | 0.87 | 30000 | 0.2929 | 0.8903 | | 0.3095 | 1.01 | 35000 | 0.2917 | 0.8899 | | 0.2844 | 1.16 | 40000 | 0.2957 | 0.8886 | | 0.2778 | 1.3 | 45000 | 0.2943 | 0.8906 | | 0.2779 | 1.45 | 50000 | 0.2890 | 0.8935 | | 0.2752 | 1.59 | 55000 | 0.2881 | 0.8919 | | 0.2736 | 1.74 | 60000 | 0.2835 | 0.8944 | | 0.2725 | 1.88 | 65000 | 0.2833 | 0.8942 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6