pranavajay
commited on
Commit
•
5322ffd
1
Parent(s):
d091be2
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import boto3
|
4 |
+
import random
|
5 |
+
import string
|
6 |
+
import numpy as np
|
7 |
+
import logging
|
8 |
+
import datetime
|
9 |
+
from fastapi import FastAPI, HTTPException, Request, Response
|
10 |
+
from fastapi.middleware.cors import CORSMiddleware
|
11 |
+
from pydantic import BaseModel, constr, conint
|
12 |
+
from diffusers import (FluxPipeline, FluxControlNetPipeline,
|
13 |
+
FluxControlNetModel, FluxImg2ImgPipeline,
|
14 |
+
FluxInpaintPipeline, CogVideoXImageToVideoPipeline)
|
15 |
+
from diffusers.utils import load_image
|
16 |
+
from PIL import Image
|
17 |
+
|
18 |
+
# Setup logging
|
19 |
+
logging.basicConfig(level=logging.INFO,
|
20 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
21 |
+
handlers=[
|
22 |
+
logging.FileHandler("error.txt"),
|
23 |
+
logging.StreamHandler()
|
24 |
+
])
|
25 |
+
|
26 |
+
app = FastAPI()
|
27 |
+
|
28 |
+
# Allow CORS for specific origins if needed
|
29 |
+
app.add_middleware(
|
30 |
+
CORSMiddleware,
|
31 |
+
allow_origins=["*"], # Update with specific domains as necessary
|
32 |
+
allow_credentials=True,
|
33 |
+
allow_methods=["*"],
|
34 |
+
allow_headers=["*"],
|
35 |
+
)
|
36 |
+
|
37 |
+
MAX_SEED = np.iinfo(np.int32).max
|
38 |
+
|
39 |
+
# AWS S3 Configuration
|
40 |
+
AWS_ACCESS_KEY_ID = "your-access-key-id"
|
41 |
+
AWS_SECRET_ACCESS_KEY = "your-secret-access-key"
|
42 |
+
AWS_REGION = "your-region"
|
43 |
+
S3_BUCKET_NAME = "your-bucket-name"
|
44 |
+
|
45 |
+
# Initialize S3 client
|
46 |
+
s3_client = boto3.client(
|
47 |
+
's3',
|
48 |
+
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
49 |
+
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
|
50 |
+
region_name=AWS_REGION
|
51 |
+
)
|
52 |
+
|
53 |
+
def log_requests(user_key: str, prompt: str):
|
54 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
55 |
+
log_entry = f"{timestamp}, {user_key}, {prompt}\n"
|
56 |
+
with open("key_requests.txt", "a") as log_file:
|
57 |
+
log_file.write(log_entry)
|
58 |
+
|
59 |
+
# Function to upload image to S3
|
60 |
+
def upload_image_to_s3(image_path: str, s3_path: str):
|
61 |
+
try:
|
62 |
+
s3_client.upload_file(image_path, S3_BUCKET_NAME, s3_path)
|
63 |
+
return f"https://{S3_BUCKET_NAME}.s3.{AWS_REGION}.amazonaws.com/{s3_path}"
|
64 |
+
except Exception as e:
|
65 |
+
logging.error(f"Error uploading image to S3: {e}")
|
66 |
+
raise HTTPException(status_code=500, detail=f"Image upload failed: {str(e)}")
|
67 |
+
|
68 |
+
# Generate a random sequence of 12 numbers and 11 words
|
69 |
+
def generate_random_sequence():
|
70 |
+
random_numbers = ''.join(random.choices(string.digits, k=12)) # 12 random digits
|
71 |
+
random_words = ''.join(random.choices(string.ascii_lowercase, k=11)) # 11 random letters
|
72 |
+
return f"{random_numbers}_{random_words}"
|
73 |
+
|
74 |
+
# Load the default pipeline once globally for efficiency
|
75 |
+
|
76 |
+
# Load the default pipeline once globally for efficiency
|
77 |
+
try:
|
78 |
+
flux_pipe = FluxPipeline.from_pretrained("pranavajay/flow", torch_dtype=torch.bfloat16)
|
79 |
+
flux_pipe.enable_model_cpu_offload()
|
80 |
+
logging.info("FluxPipeline loaded successfully.")
|
81 |
+
except Exception as e:
|
82 |
+
logging.error(f"Failed to load FluxPipeline: {e}")
|
83 |
+
raise HTTPException(status_code=500, detail=f"Failed to load the model: {str(e)}")
|
84 |
+
|
85 |
+
try:
|
86 |
+
img_pipe = FluxImg2ImgPipeline.from_pretrained("pranavajay/flow", torch_dtype=torch.bfloat16)
|
87 |
+
img_pipe.enable_model_cpu_offload()
|
88 |
+
logging.info("FluxImg2ImgPipeline loaded successfully.")
|
89 |
+
except Exception as e:
|
90 |
+
logging.error(f"Failed to load FluxPipeline: {e}")
|
91 |
+
raise HTTPException(status_code=500, detail=f"Failed to load the model: {str(e)}")
|
92 |
+
|
93 |
+
try:
|
94 |
+
inpainting_pipe = FluxInpaintPipeline.from_pretrained("pranavajay/flow", torch_dtype=torch.bfloat16)
|
95 |
+
inpainting_pipe.enable_model_cpu_offload()
|
96 |
+
logging.info("FluxInpaintPipeline loaded successfully.")
|
97 |
+
except Exception as e:
|
98 |
+
logging.error(f"Failed to load FluxInpaintPipeline: {e}")
|
99 |
+
raise HTTPException(status_code=500, detail=f"Failed to load the model: {str(e)}")
|
100 |
+
|
101 |
+
try:
|
102 |
+
video = CogVideoXImageToVideoPipeline.from_pretrained(
|
103 |
+
"THUDM/CogVideoX-5b-I2V",
|
104 |
+
torch_dtype=torch.bfloat16
|
105 |
+
)
|
106 |
+
video.enable_sequential_cpu_offload()
|
107 |
+
video.vae.enable_tiling()
|
108 |
+
video.vae.enable_slicing()
|
109 |
+
logging.info("CogVideoXImageToVideoPipeline loaded successfully.")
|
110 |
+
except Exception as e:
|
111 |
+
logging.error(f"Failed to load CogVideoXImageToVideoPipeline: {e}")
|
112 |
+
raise HTTPException(status_code=500, detail=f"Failed to load the model: {str(e)}")
|
113 |
+
|
114 |
+
|
115 |
+
flux_controlnet_pipe = None
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
# Rate limiting variables
|
120 |
+
request_timestamps = defaultdict(list) # Store timestamps of requests per user key
|
121 |
+
RATE_LIMIT = 30 # Maximum requests allowed
|
122 |
+
TIME_WINDOW = 5 # Time window in seconds
|
123 |
+
|
124 |
+
# Available LoRA styles and ControlNet adapters
|
125 |
+
style_lora_mapping = {
|
126 |
+
"Uncensored": {"path": "enhanceaiteam/Flux-uncensored", "triggered_word": "nsfw"},
|
127 |
+
"Logo": {"path": "Shakker-Labs/FLUX.1-dev-LoRA-Logo-Design", "triggered_word": "logo"},
|
128 |
+
"Yarn": {"path": "Shakker-Labs/FLUX.1-dev-LoRA-MiaoKa-Yarn-World", "triggered_word": "mkym this is made of wool"},
|
129 |
+
"Anime": {"path": "prithivMLmods/Canopus-LoRA-Flux-Anime", "triggered_word": "anime"},
|
130 |
+
"Comic": {"path": "wkplhc/comic", "triggered_word": "comic"}
|
131 |
+
}
|
132 |
+
|
133 |
+
adapter_controlnet_mapping = {
|
134 |
+
"Canny": "InstantX/FLUX.1-dev-controlnet-canny",
|
135 |
+
"Depth": "Shakker-Labs/FLUX.1-dev-ControlNet-Depth",
|
136 |
+
"Pose": "Shakker-Labs/FLUX.1-dev-ControlNet-Pose",
|
137 |
+
"Upscale": "jasperai/Flux.1-dev-Controlnet-Upscaler"
|
138 |
+
}
|
139 |
+
|
140 |
+
# Request model for query parameters
|
141 |
+
class GenerateImageRequest(BaseModel):
|
142 |
+
prompt: constr(min_length=1) # Ensures prompt is not empty
|
143 |
+
guidance_scale: float = 7.5
|
144 |
+
seed: conint(ge=0, le=MAX_SEED) = 42
|
145 |
+
randomize_seed: bool = False
|
146 |
+
height: conint(gt=0) = 768
|
147 |
+
width: conint(gt=0) = 1360
|
148 |
+
control_image_url: str = "https://enhanceai.s3.amazonaws.com/792e2322-77fe-4070-aac4-7fa8d9e29c11_1.png"
|
149 |
+
controlnet_conditioning_scale: float = 0.6
|
150 |
+
num_inference_steps: conint(gt=0) = 50
|
151 |
+
num_images_per_prompt: conint(gt=0, le=5) = 1 # Limit to max 5 images per request
|
152 |
+
style: str = None # Optional LoRA style
|
153 |
+
adapter: str = None # Optional ControlNet adapter
|
154 |
+
user_key: str # API user key
|
155 |
+
|
156 |
+
def log_request(key: str, query: str):
|
157 |
+
with open("key.txt", "a") as f:
|
158 |
+
f.write(f"{datetime.datetime.now()} - Key: {key} - Query: {query}\n")
|
159 |
+
|
160 |
+
def apply_lora_style(pipe, style, prompt):
|
161 |
+
""" Apply the specified LoRA style to the prompt and load weights. """
|
162 |
+
if style in style_lora_mapping:
|
163 |
+
lora_path = style_lora_mapping[style]["path"]
|
164 |
+
triggered_word = style_lora_mapping[style]["triggered_word"]
|
165 |
+
pipe.load_lora_weights(lora_path)
|
166 |
+
return f"{triggered_word} {prompt}" # Add triggered word to prompt
|
167 |
+
return prompt
|
168 |
+
|
169 |
+
def set_controlnet_adapter(adapter: str, is_inpainting: bool = False):
|
170 |
+
"""
|
171 |
+
Set the ControlNet adapter for the pipeline.
|
172 |
+
|
173 |
+
Parameters:
|
174 |
+
adapter (str): The key to identify which ControlNet adapter to load.
|
175 |
+
is_inpainting (bool, optional): Whether to use the inpainting pipeline. Defaults to False.
|
176 |
+
|
177 |
+
Raises:
|
178 |
+
ValueError: If the adapter is not found in the adapter_controlnet_mapping.
|
179 |
+
"""
|
180 |
+
global flux_controlnet_pipe
|
181 |
+
|
182 |
+
# Check if the adapter is valid
|
183 |
+
if adapter not in adapter_controlnet_mapping:
|
184 |
+
raise ValueError(f"Invalid ControlNet adapter: {adapter}")
|
185 |
+
|
186 |
+
# Get the ControlNet model path based on the adapter
|
187 |
+
controlnet_model_path = adapter_controlnet_mapping[adapter]
|
188 |
+
|
189 |
+
# Load the ControlNet model with the specified torch_dtype
|
190 |
+
controlnet = FluxControlNetModel.from_pretrained(controlnet_model_path, torch_dtype=torch.bfloat16)
|
191 |
+
|
192 |
+
# Select the appropriate pipeline (inpainting or standard)
|
193 |
+
pipeline_cls = FluxControlNetInpaintPipeline if is_inpainting else FluxControlNetPipeline
|
194 |
+
|
195 |
+
# Load the pipeline
|
196 |
+
flux_controlnet_pipe = pipeline_cls.from_pretrained(
|
197 |
+
"pranavajay/flow", controlnet=controlnet, torch_dtype=torch.bfloat16
|
198 |
+
)
|
199 |
+
|
200 |
+
# Move the pipeline to the GPU
|
201 |
+
flux_controlnet_pipe.to("cuda")
|
202 |
+
|
203 |
+
logging.info(f"ControlNet adapter '{adapter}' loaded successfully.")
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
|
211 |
+
def rate_limit(user_key: str):
|
212 |
+
""" Check if the user is exceeding the rate limit. """
|
213 |
+
current_time = time.time()
|
214 |
+
|
215 |
+
# Clean up old timestamps
|
216 |
+
request_timestamps[user_key] = [t for t in request_timestamps[user_key] if current_time - t < TIME_WINDOW]
|
217 |
+
|
218 |
+
if len(request_timestamps[user_key]) >= RATE_LIMIT:
|
219 |
+
logging.info(f"Rate limit exceeded for user_key: {user_key}")
|
220 |
+
return False
|
221 |
+
|
222 |
+
# Record the new request timestamp
|
223 |
+
request_timestamps[user_key].append(current_time)
|
224 |
+
return True
|
225 |
+
|
226 |
+
@app.post("/text_to_image/")
|
227 |
+
async def generate_image(req: GenerateImageRequest):
|
228 |
+
seed = req.seed
|
229 |
+
if not rate_limit(req.user_key):
|
230 |
+
log_requests(req.user_key, req.prompt) # Log the request when rate limit is exceeded
|
231 |
+
|
232 |
+
retries = 3 # Number of retries for transient errors
|
233 |
+
|
234 |
+
for attempt in range(retries):
|
235 |
+
try:
|
236 |
+
# Check if prompt is None or empty
|
237 |
+
if not req.prompt or req.prompt.strip() == "":
|
238 |
+
raise ValueError("Prompt cannot be empty.")
|
239 |
+
|
240 |
+
original_prompt = req.prompt # Save the original prompt
|
241 |
+
|
242 |
+
# Set ControlNet if adapter is provided
|
243 |
+
if req.adapter:
|
244 |
+
try:
|
245 |
+
set_controlnet_adapter(req.adapter)
|
246 |
+
except Exception as e:
|
247 |
+
logging.error(f"Error setting ControlNet adapter: {e}")
|
248 |
+
raise HTTPException(status_code=400, detail=f"Failed to load ControlNet adapter: {str(e)}")
|
249 |
+
apply_lora_style(flux_controlnet_pipe, req.style, req.prompt)
|
250 |
+
|
251 |
+
|
252 |
+
# Load control image
|
253 |
+
try:
|
254 |
+
control_image = load_image(req.control_image_url)
|
255 |
+
except Exception as e:
|
256 |
+
logging.error(f"Error loading control image from URL: {e}")
|
257 |
+
raise HTTPException(status_code=400, detail="Invalid control image URL or image could not be loaded.")
|
258 |
+
|
259 |
+
# Image generation with ControlNet
|
260 |
+
try:
|
261 |
+
if req.randomize_seed:
|
262 |
+
seed = random.randint(0, MAX_SEED)
|
263 |
+
generator = torch.Generator().manual_seed(seed)
|
264 |
+
|
265 |
+
images = flux_controlnet_pipe(
|
266 |
+
prompt=modified_prompt,
|
267 |
+
guidance_scale=req.guidance_scale,
|
268 |
+
height=req.height,
|
269 |
+
width=req.width,
|
270 |
+
num_inference_steps=req.num_inference_steps,
|
271 |
+
num_images_per_prompt=req.num_images_per_prompt,
|
272 |
+
control_image=control_image,
|
273 |
+
generator=generator,
|
274 |
+
controlnet_conditioning_scale=req.controlnet_conditioning_scale
|
275 |
+
).images
|
276 |
+
except torch.cuda.OutOfMemoryError:
|
277 |
+
logging.error("GPU out of memory error while generating images with ControlNet.")
|
278 |
+
raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.")
|
279 |
+
except Exception as e:
|
280 |
+
logging.error(f"Error during image generation with ControlNet: {e}")
|
281 |
+
raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}")
|
282 |
+
else:
|
283 |
+
# Image generation without ControlNet
|
284 |
+
try:
|
285 |
+
apply_lora_style(flux_pipe, req.style, req.prompt)
|
286 |
+
if req.randomize_seed:
|
287 |
+
seed = random.randint(0, MAX_SEED)
|
288 |
+
generator = torch.Generator().manual_seed(seed)
|
289 |
+
|
290 |
+
images = flux_pipe(
|
291 |
+
prompt=modified_prompt,
|
292 |
+
guidance_scale=req.guidance_scale,
|
293 |
+
height=req.height,
|
294 |
+
width=req.width,
|
295 |
+
num_inference_steps=req.num_inference_steps,
|
296 |
+
num_images_per_prompt=req.num_images_per_prompt,
|
297 |
+
generator=generator
|
298 |
+
).images
|
299 |
+
except torch.cuda.OutOfMemoryError:
|
300 |
+
logging.error("GPU out of memory error while generating images without ControlNet.")
|
301 |
+
raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.")
|
302 |
+
except Exception as e:
|
303 |
+
logging.error(f"Error during image generation without ControlNet: {e}")
|
304 |
+
raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}")
|
305 |
+
|
306 |
+
# Saving images and uploading to S3
|
307 |
+
image_urls = []
|
308 |
+
for i, img in enumerate(images):
|
309 |
+
image_path = f"generated_images/{generate_random_sequence()}.png"
|
310 |
+
img.save(image_path)
|
311 |
+
image_url = upload_image_to_s3(image_path, image_path)
|
312 |
+
image_urls.append(image_url)
|
313 |
+
os.remove(image_path) # Clean up local files after upload
|
314 |
+
|
315 |
+
return {"status": "success", "output": image_url, "prompt": original_prompt, "height": req.height, "width": req.width, "scale": req.guidance_scale, "step": step, "sytle": req.sytle, "adapter": req.adapter}
|
316 |
+
|
317 |
+
except Exception as e:
|
318 |
+
logging.error(f"Attempt {attempt + 1} failed: {e}")
|
319 |
+
if attempt == retries - 1: # Last attempt
|
320 |
+
raise HTTPException(status_code=500, detail=f"Failed to generate image after multiple attempts: {str(e)}")
|
321 |
+
continue # Retry on transient errors
|
322 |
+
|
323 |
+
|
324 |
+
# Image-to-Image request model
|
325 |
+
class GenerateImageToImageRequest(BaseModel):
|
326 |
+
prompt: str = None # Prompt can be None
|
327 |
+
image: str = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
328 |
+
strength: float = 0.7
|
329 |
+
guidance_scale: float = 7.5
|
330 |
+
seed: conint(ge=0, le=MAX_SEED) = 42
|
331 |
+
randomize_seed: bool = False
|
332 |
+
height: conint(gt=0) = 768
|
333 |
+
width: conint(gt=0) = 1360
|
334 |
+
control_image_url: str = None # Optional ControlNet image
|
335 |
+
controlnet_conditioning_scale: float = 0.6
|
336 |
+
num_inference_steps: conint(gt=0) = 50
|
337 |
+
num_images_per_prompt: conint(gt=0, le=5) = 1
|
338 |
+
style: str = None # Optional LoRA style
|
339 |
+
adapter: str = None # Optional ControlNet adapter
|
340 |
+
user_key: str # API user key
|
341 |
+
|
342 |
+
@app.post("/image_to_image/")
|
343 |
+
async def generate_image_to_image(req: GenerateImageToImageRequest):
|
344 |
+
seed = req.seed
|
345 |
+
original_prompt = req.prompt
|
346 |
+
modified_prompt = original_prompt
|
347 |
+
|
348 |
+
# Check if user is exceeding rate limit
|
349 |
+
if not rate_limit(req.user_key):
|
350 |
+
log_requests(req.user_key, req.prompt if req.prompt else "No prompt")
|
351 |
+
raise HTTPException(status_code=429, detail="Rate limit exceeded")
|
352 |
+
|
353 |
+
retries = 3 # Number of retries for transient errors
|
354 |
+
|
355 |
+
for attempt in range(retries):
|
356 |
+
try:
|
357 |
+
# Check if prompt is None or empty
|
358 |
+
if not req.prompt or req.prompt.strip() == "":
|
359 |
+
raise ValueError("Prompt cannot be empty.")
|
360 |
+
|
361 |
+
original_prompt = req.prompt # Save the original prompt
|
362 |
+
|
363 |
+
# Set ControlNet if adapter is provided
|
364 |
+
if req.adapter:
|
365 |
+
try:
|
366 |
+
set_controlnet_adapter(req.adapter)
|
367 |
+
except Exception as e:
|
368 |
+
logging.error(f"Error setting ControlNet adapter: {e}")
|
369 |
+
raise HTTPException(status_code=400, detail=f"Failed to load ControlNet adapter: {str(e)}")
|
370 |
+
apply_lora_style(flux_controlnet_pipe, req.style, req.prompt)
|
371 |
+
|
372 |
+
|
373 |
+
# Load control image
|
374 |
+
try:
|
375 |
+
control_image = load_image(req.control_image_url)
|
376 |
+
except Exception as e:
|
377 |
+
logging.error(f"Error loading control image from URL: {e}")
|
378 |
+
raise HTTPException(status_code=400, detail="Invalid control image URL or image could not be loaded.")
|
379 |
+
|
380 |
+
# Image generation with ControlNet
|
381 |
+
try:
|
382 |
+
if req.randomize_seed:
|
383 |
+
seed = random.randint(0, MAX_SEED)
|
384 |
+
generator = torch.Generator().manual_seed(seed)
|
385 |
+
|
386 |
+
images = flux_controlnet_pipe(
|
387 |
+
prompt=modified_prompt,
|
388 |
+
guidance_scale=req.guidance_scale,
|
389 |
+
height=req.height,
|
390 |
+
width=req.width,
|
391 |
+
num_inference_steps=req.num_inference_steps,
|
392 |
+
num_images_per_prompt=req.num_images_per_prompt,
|
393 |
+
control_image=control_image,
|
394 |
+
generator=generator,
|
395 |
+
controlnet_conditioning_scale=req.controlnet_conditioning_scale
|
396 |
+
).images
|
397 |
+
except torch.cuda.OutOfMemoryError:
|
398 |
+
logging.error("GPU out of memory error while generating images with ControlNet.")
|
399 |
+
raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.")
|
400 |
+
except Exception as e:
|
401 |
+
logging.error(f"Error during image generation with ControlNet: {e}")
|
402 |
+
raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}")
|
403 |
+
else:
|
404 |
+
# Image generation without ControlNet
|
405 |
+
try:
|
406 |
+
apply_lora_style(img_pipe, req.style, req.prompt)
|
407 |
+
if req.randomize_seed:
|
408 |
+
seed = random.randint(0, MAX_SEED)
|
409 |
+
generator = torch.Generator().manual_seed(seed)
|
410 |
+
source = load_image(req.image)
|
411 |
+
images = img_pipe(
|
412 |
+
prompt=modified_prompt,
|
413 |
+
image=source,
|
414 |
+
strength=req.strength,
|
415 |
+
guidance_scale=req.guidance_scale,
|
416 |
+
height=req.height,
|
417 |
+
width=req.width,
|
418 |
+
num_inference_steps=req.num_inference_steps,
|
419 |
+
num_images_per_prompt=req.num_images_per_prompt,
|
420 |
+
generator=generator
|
421 |
+
).images
|
422 |
+
except torch.cuda.OutOfMemoryError:
|
423 |
+
logging.error("GPU out of memory error while generating images without ControlNet.")
|
424 |
+
raise HTTPException(status_code=500, detail="GPU overload occurred while generating images. Try reducing the resolution or number of steps.")
|
425 |
+
except Exception as e:
|
426 |
+
logging.error(f"Error during image generation without ControlNet: {e}")
|
427 |
+
raise HTTPException(status_code=500, detail=f"Error during image generation: {str(e)}")
|
428 |
+
|
429 |
+
# Saving images and uploading to S3
|
430 |
+
image_urls = []
|
431 |
+
for i, img in enumerate(images):
|
432 |
+
image_path = f"generated_images/{generate_random_sequence()}.png"
|
433 |
+
img.save(image_path)
|
434 |
+
image_url = upload_image_to_s3(image_path, image_path)
|
435 |
+
image_urls.append(image_url)
|
436 |
+
os.remove(image_path) # Clean up local files after upload
|
437 |
+
|
438 |
+
return {"status": "success", "output": image_url, "prompt": original_prompt, "height": req.height, "width": width, "image": req.image, "strength": req.strength, "scale": req.guidance_scale, "step": step, "sytle": req.sytle, "adapter": req.adapter}
|
439 |
+
|
440 |
+
except Exception as e:
|
441 |
+
logging.error(f"Attempt {attempt + 1} failed: {e}")
|
442 |
+
if attempt == retries - 1: # Last attempt
|
443 |
+
raise HTTPException(status_code=500, detail=f"Failed to generate image after m
|