import gradio as gr from transformers import pipeline # Load the model using the correct identifier classifier = pipeline('text-classification', model='prabhaskenche/toxic-comment-classification-using-RoBERTa') def classify(text): results = classifier(text) # Adjust the label names based on your model's label mapping non_toxic_score = next((item['score'] for item in results[0] if item['label'] == 'LABEL_0'), 0) toxic_score = next((item['score'] for item in results[0] if item['label'] == 'LABEL_1'), 0) return f"{non_toxic_score:.3f} non-toxic, {toxic_score:.3f} toxic" # Create the Gradio interface interface = gr.Interface( fn=classify, inputs=gr.Textbox(lines=2, placeholder="Enter text here..."), outputs="text" ) # Launch the interface interface.launch()