--- license: mit inference: parameters: aggregation_strategy: "average" language: - pt pipeline_tag: fill-mask tags: - medialbertina-ptpt - deberta - portuguese - european portuguese - medical - clinical - healthcare - NER - Named Entity Recognition - IE - Information Extraction widget: - text: Durante a cirurgia ortopédica para corrigir a fratura no tornozelo, os sinais vitais do utente, incluindo a pressão arterial, com leitura de 120/87 mmHg, a frequência cardíaca, de 80 batimentos por minuto, e SpO2 a 98%, foram monitorizados. Após a cirurgia o utente apresentava dor intensa no local e inchaço no tornozelo, mas os resultados dos exames de radiografia revelaram uma recuperação satisfatória. example_title: Example 1 - text: Durante o procedimento endoscópico, foram encontrados pólipos no cólon do paciente. example_title: Example 2 - text: Foi recomendada aspirina de 500mg a cada 4 horas, durante 3 dias. example_title: Example 3 - text: Após as sessões de fisioterapia o paciente apresenta recuperação de mobilidade. example_title: Example 4 - text: O paciente está em Quimioterapia com uma dosagem específica de Cisplatina para o tratamento do cancro do pulmão. example_title: Example 5 - text: Monitorização da Freq. cardíaca com 90 bpm. P Arterial de 120-80 mmHg example_title: Example 6 - text: A ressonância magnética da utente revelou uma ruptura no menisco lateral do joelho. example_title: Example 7 - text: A paciente foi diagnosticada com esclerose múltipla e iniciou terapia com imunomoduladores. --- # MediAlbertina The first publicly available medical language models trained with real European Portuguese data. MediAlbertina is a family of encoders from the Bert family, DeBERTaV2-based, resulting from the continuation of the pre-training of [PORTULAN's Albertina](https://huggingface.co/PORTULAN) models with Electronic Medical Records shared by Portugal's largest public hospital. Like its antecessors, MediAlbertina models are distributed under the [MIT license](https://huggingface.co/portugueseNLP/medialbertina_pt-pt_900m/blob/main/LICENSE). # Model Description MediAlbertina PT-PT 900M NER was created through fine-tuning of [MediAlbertina PT-PT 900M](https://huggingface.co/portugueseNLP/medialbertina_pt-pt_900m) on real European Portuguese EMRs that have been hand-annotated for the following entities: - Diagnostico - Sintoma - Medicamento - Dosagem - ProcedimentoMedico - SinalVital - Resultado - Progresso MediAlbertina PT-PT 900M NER achieved superior results to the same adaptation made on a non-medical Portuguese language model, demonstrating the effectiveness of this domain adaptation, and its potential for medical AI in Portugal. | Model | NER single-model | NER multi-models | Assertion Status | |-------------------------|:----------------:|:----------------:|:----------------:| | | F1-score | F1-score | F1-score | |albertina-900m-portuguese-ptpt-encoder | 0.813 | 0.811 | 0.687 | | **medialbertina_pt-pt_900m** | **0.832** | **0.848** | **0.755** | ## Data MediAlbertina PT-PT 900M NER was fine-tuned on more than 10k hand-annotated entities from more than a thousand fully anonymized medical sentences from Portugal's largest public hospital. This data was acquired under the framework of the [FCT project DSAIPA/AI/0122/2020 AIMHealth-Mobile Applications Based on Artificial Intelligence](https://ciencia.iscte-iul.pt/projects/aplicacoes-moveis-baseadas-em-inteligencia-artificial-para-resposta-de-saude-publica/1567). ## How to use ```Python from transformers import pipeline ner_pipeline = pipeline('ner', model='portugueseNLP/medialbertina_pt-pt_900m_NER', aggregation_strategy='average') sentence = 'Durante o procedimento endoscópico, foram encontrados pólipos no cólon do paciente.' entities = ner_pipeline(sentence) for entity in entities: print(f"{entity['entity_group']} - {sentence[entity['start']:entity['end']]}") ``` ## Citation MediAlbertina is developed by a joint team from [ISCTE-IUL](https://www.iscte-iul.pt/), Portugal, and [Select Data](https://selectdata.com/), CA USA. For a fully detailed description, check the respective publication: ```latex In publishing process. Reference will be added soon. ``` Please use the above cannonical reference when using or citing this model.