import pandas as pd import numpy as np import os from tqdm import tqdm import timm import torchvision.transforms as T from PIL import Image import torch class PytorchWorker: """Run inference using PyTorch.""" def __init__(self, model_path: str, model_name: str, number_of_categories: int): def _load_model(model_name, model_path): print("Setting up Pytorch Model") self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"Using device: {self.device}") model = timm.create_model(model_name, num_classes=number_of_categories, pretrained=False) model_ckpt = torch.load(model_path, map_location=self.device) model.load_state_dict(model_ckpt) return model.to(self.device).eval() self.model = _load_model(model_name, model_path) self.transforms = T.Compose([ T.Resize((224, 224)), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) def predict_image(self, image: Image.Image) -> list: """Run inference using PyTorch. :param image: Input image as PIL Image. :return: A list with logits. """ image_tensor = self.transforms(image).unsqueeze(0).to(self.device) logits = self.model(image_tensor) return logits.tolist() def make_submission(test_metadata, model_path, model_name, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"): """Make submission with given metadata and model.""" model = PytorchWorker(model_path, model_name, number_of_categories=1604) # Adjust number_of_categories as needed predictions = [] observation_predictions = {} for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)): image_path = os.path.join(images_root_path, row['filename']) test_image = Image.open(image_path).convert("RGB") logits = model.predict_image(test_image) predicted_class = np.argmax(logits) obs_id = row['observation_id'] if obs_id not in observation_predictions: observation_predictions[obs_id] = [] observation_predictions[obs_id].append(predicted_class) final_predictions = {obs_id: max(set(preds), key=preds.count) for obs_id, preds in observation_predictions.items()} output_df = pd.DataFrame(list(final_predictions.items()), columns=['observation_id', 'class_id']) output_df.to_csv(output_csv_path, index=False) if __name__ == "__main__": import zipfile with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref: zip_ref.extractall("/tmp/data") MODEL_PATH = "resnet_classifier.pth" # Ensure this matches the filename of your model MODEL_NAME = "resnet50" # Adjust this to your specific model metadata_file_path = "./SnakeCLEF2023_TestMetadata.csv" test_metadata = pd.read_csv(metadata_file_path) make_submission( test_metadata=test_metadata, model_path=MODEL_PATH, model_name=MODEL_NAME )