--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9814814814814815 --- # swin-tiny-patch4-window7-224-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0719 - Accuracy: 0.9815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2075 | 0.98 | 33 | 0.5666 | 0.8519 | | 0.2022 | 1.98 | 66 | 0.2523 | 0.9127 | | 0.1206 | 2.98 | 99 | 0.1576 | 0.9497 | | 0.0897 | 3.98 | 132 | 0.1421 | 0.9563 | | 0.0564 | 4.98 | 165 | 0.1114 | 0.9656 | | 0.0475 | 5.98 | 198 | 0.0678 | 0.9815 | | 0.0332 | 6.98 | 231 | 0.0819 | 0.9775 | | 0.0234 | 7.98 | 264 | 0.0679 | 0.9802 | | 0.0126 | 8.98 | 297 | 0.0684 | 0.9828 | | 0.0306 | 9.98 | 330 | 0.0719 | 0.9815 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2