--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: resnet-50-finetuned-nct-crc-he-45k results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9788888888888889 --- # resnet-50-finetuned-nct-crc-he-45k This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0704 - Accuracy: 0.9789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6319 | 1.0 | 246 | 1.5910 | 0.8181 | | 0.335 | 2.0 | 492 | 0.2492 | 0.9397 | | 0.2563 | 3.0 | 738 | 0.1462 | 0.9613 | | 0.2055 | 4.0 | 985 | 0.1201 | 0.9679 | | 0.1713 | 5.0 | 1231 | 0.1003 | 0.9719 | | 0.1575 | 6.0 | 1477 | 0.1020 | 0.9722 | | 0.1293 | 7.0 | 1723 | 0.0817 | 0.9747 | | 0.1104 | 8.0 | 1970 | 0.0798 | 0.9779 | | 0.1552 | 9.0 | 2216 | 0.0851 | 0.9763 | | 0.1267 | 9.99 | 2460 | 0.0704 | 0.9789 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.10.0 - Tokenizers 0.13.2