--- base_model: FacebookAI/roberta-base library_name: peft license: mit metrics: - precision - recall - f1 - accuracy tags: - generated_from_trainer model-index: - name: roberta-base-ner-qlorafinetune-runs-64-128 results: [] --- # roberta-base-ner-qlorafinetune-runs-64-128 This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1212 - Precision: 0.9464 - Recall: 0.9672 - F1: 0.9567 - Accuracy: 0.9831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1134 | 1.0 | 2643 | 0.1602 | 0.9348 | 0.9495 | 0.9421 | 0.9739 | | 0.1127 | 2.0 | 5286 | 0.1311 | 0.9417 | 0.9637 | 0.9526 | 0.9809 | | 0.0864 | 3.0 | 7929 | 0.1212 | 0.9464 | 0.9672 | 0.9567 | 0.9831 | ### Framework versions - PEFT 0.12.0 - Transformers 4.43.3 - Pytorch 2.4.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1