--- language: [] library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction base_model: yano0/my_rope_bert_v2 metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max widget: [] pipeline_tag: sentence-similarity model-index: - name: SentenceTransformer based on yano0/my_rope_bert_v2 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: Unknown type: unknown metrics: - type: pearson_cosine value: 0.8363388345473755 name: Pearson Cosine - type: spearman_cosine value: 0.7829140815230603 name: Spearman Cosine - type: pearson_manhattan value: 0.8169134821588451 name: Pearson Manhattan - type: spearman_manhattan value: 0.7806182228552376 name: Spearman Manhattan - type: pearson_euclidean value: 0.8176194153920942 name: Pearson Euclidean - type: spearman_euclidean value: 0.7812646926795144 name: Spearman Euclidean - type: pearson_dot value: 0.790584312051173 name: Pearson Dot - type: spearman_dot value: 0.7341313863604967 name: Spearman Dot - type: pearson_max value: 0.8363388345473755 name: Pearson Max - type: spearman_max value: 0.7829140815230603 name: Spearman Max --- # SentenceTransformer based on yano0/my_rope_bert_v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [yano0/my_rope_bert_v2](https://huggingface.co/yano0/my_rope_bert_v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [yano0/my_rope_bert_v2](https://huggingface.co/yano0/my_rope_bert_v2) - **Maximum Sequence Length:** 1024 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: RetrievaBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("pkshatech/RoSEtta-base") # Run inference sentences = [ 'The weather is lovely today.', "It's so sunny outside!", 'He drove to the stadium.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8363 | | **spearman_cosine** | **0.7829** | | pearson_manhattan | 0.8169 | | spearman_manhattan | 0.7806 | | pearson_euclidean | 0.8176 | | spearman_euclidean | 0.7813 | | pearson_dot | 0.7906 | | spearman_dot | 0.7341 | | pearson_max | 0.8363 | | spearman_max | 0.7829 | ## Training Details ### Training Logs | Epoch | Step | spearman_cosine | |:-----:|:----:|:---------------:| | 0 | 0 | 0.7829 | ### Framework Versions - Python: 3.10.13 - Sentence Transformers: 3.0.0 - Transformers: 4.44.0 - PyTorch: 2.3.1+cu118 - Accelerate: 0.30.1 - Datasets: 2.19.2 - Tokenizers: 0.19.1 ## Citation ### BibTeX