--- license: mit library_name: peft tags: - generated_from_trainer datasets: - scitldr base_model: microsoft/phi-1_5 model-index: - name: Phi-1.5-Summarization-QLoRA results: [] pipeline_tag: summarization --- # Phi-1.5 Summarization (QLoRA) This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the scitldr dataset. It achieves the following results on the evaluation set: - Loss: 2.5866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5683 | 0.25 | 500 | 2.6196 | | 2.5308 | 0.5 | 1000 | 2.5992 | | 2.558 | 0.75 | 1500 | 2.5886 | | 2.4925 | 1.0 | 2000 | 2.5827 | | 2.3252 | 1.26 | 2500 | 2.5948 | | 2.3128 | 1.51 | 3000 | 2.5879 | | 2.4622 | 1.76 | 3500 | 2.5866 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2