--- library_name: peft license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer datasets: - scitldr model-index: - name: Llama-3.2-1B-Summarization-LoRa results: [] pipeline_tag: summarization --- # Llama-3.2-1B-Summarization-LoRa This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on the scitldr dataset. It achieves the following results on the evaluation set: - Loss: 2.5661 ## Model description Fine-tuned (LoRa) Version of meta-llama/Llama-3.2-1B for Summarization of scientific documents ## Intended uses & limitations Summarization ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.45 | 0.2008 | 200 | 2.5272 | | 2.4331 | 0.4016 | 400 | 2.5327 | | 2.4369 | 0.6024 | 600 | 2.5285 | | 2.4315 | 0.8032 | 800 | 2.5238 | | 2.4303 | 1.0040 | 1000 | 2.5181 | | 2.1077 | 1.2048 | 1200 | 2.5525 | | 2.0951 | 1.4056 | 1400 | 2.5611 | | 2.0738 | 1.6064 | 1600 | 2.5591 | | 2.0539 | 1.8072 | 1800 | 2.5661 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3