--- base_model: meta-llama/Meta-Llama-3.1-8B datasets: - scitldr library_name: peft license: llama3.1 tags: - generated_from_trainer model-index: - name: Llama-3.1-8B-Summarization-QLoRa results: [] pipeline_tag: summarization --- # Llama-3.1-8B-Summarization-QLoRa This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the scitldr dataset. It achieves the following results on the evaluation set: - Loss: 2.3813 ## Model description More information needed ## Intended uses & limitations Summarization ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1968 | 0.2008 | 200 | 2.2962 | | 2.2026 | 0.4016 | 400 | 2.3085 | | 2.205 | 0.6024 | 600 | 2.3048 | | 2.2028 | 0.8032 | 800 | 2.2968 | | 2.2001 | 1.0040 | 1000 | 2.2911 | | 1.7063 | 1.2048 | 1200 | 2.3696 | | 1.6856 | 1.4056 | 1400 | 2.3756 | | 1.6556 | 1.6064 | 1600 | 2.3823 | | 1.6331 | 1.8072 | 1800 | 2.3813 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1