--- license: other library_name: peft tags: - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B datasets: - scitldr model-index: - name: Llama-3-8B-Summarization-QLoRa results: [] --- # Llama-3-8B-Summarization-QLoRa This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the scitldr dataset. It achieves the following results on the evaluation set: - Loss: 2.4051 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.226 | 0.5020 | 500 | 2.3232 | | 2.2207 | 1.0040 | 1000 | 2.3130 | | 1.6901 | 1.5060 | 1500 | 2.4051 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1