--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-13_model results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.835 --- # vit-base-patch16-224-13_model This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5185 - Accuracy: 0.835 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.7535 | 0.9787 | 23 | 1.3773 | 0.545 | | 0.9606 | 2.0 | 47 | 1.1264 | 0.625 | | 0.5199 | 2.9787 | 70 | 0.7703 | 0.705 | | 0.3037 | 4.0 | 94 | 0.6922 | 0.745 | | 0.1607 | 4.9787 | 117 | 0.5718 | 0.81 | | 0.148 | 6.0 | 141 | 0.5436 | 0.82 | | 0.1238 | 6.9787 | 164 | 0.5454 | 0.805 | | 0.0889 | 8.0 | 188 | 0.5023 | 0.84 | | 0.0745 | 8.8085 | 207 | 0.5185 | 0.835 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1