--- license: apache-2.0 base_model: cl-tohoku/bert-base-japanese-v3 tags: - generated_from_trainer datasets: - jglue metrics: - accuracy model-index: - name: output_jcommonsenseqa results: [] --- # output_jcommonsenseqa This model is a fine-tuned version of [cl-tohoku/bert-base-japanese-v3](https://huggingface.co/cl-tohoku/bert-base-japanese-v3) on the jglue dataset. It achieves the following results on the evaluation set: - Loss: 0.5267 - Accuracy: 0.8302 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.231 | 1.0 | 280 | 0.5796 | 0.8239 | | 0.3484 | 2.0 | 560 | 0.4979 | 0.8239 | | 0.2421 | 3.0 | 840 | 0.5267 | 0.8302 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0