--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: wav2vec2-xls-r-300m-ja-phoneme_cv_14_3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train[:50%] args: default metrics: - name: Wer type: wer value: 0.1460970338882424 --- # wav2vec2-xls-r-300m-ja-phoneme_cv_14_3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7558 - Wer: 0.1461 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.2909 | 0.44 | 400 | 2.8888 | 1.0 | | 1.7369 | 0.88 | 800 | 0.7558 | 0.1461 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3