fashxp's picture
End of training
0279ede verified
|
raw
history blame
2.41 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: car-countries-classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.29411764705882354

car-countries-classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4039
  • Accuracy: 0.2941

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9231 3 1.5830 0.3137
No log 1.8462 6 1.5342 0.2941
No log 2.7692 9 1.4845 0.2941
1.5308 4.0 13 1.4705 0.2745
1.5308 4.9231 16 1.4534 0.3137
1.5308 5.8462 19 1.4583 0.2745
1.3601 6.7692 22 1.4218 0.2941
1.3601 8.0 26 1.4283 0.2745
1.3601 8.9231 29 1.3973 0.3137
1.2778 9.2308 30 1.4039 0.2941

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1