File size: 5,430 Bytes
3a1f55d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- sentiment140
metrics:
- accuracy
model-index:
- name: Sentiment140_ALBERT_5E
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: sentiment140
type: sentiment140
config: sentiment140
split: train
args: sentiment140
metrics:
- name: Accuracy
type: accuracy
value: 0.8533333333333334
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Sentiment140_ALBERT_5E
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the sentiment140 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6103
- Accuracy: 0.8533
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6713 | 0.08 | 50 | 0.5704 | 0.7333 |
| 0.5742 | 0.16 | 100 | 0.4620 | 0.8 |
| 0.5104 | 0.24 | 150 | 0.5536 | 0.74 |
| 0.5313 | 0.32 | 200 | 0.5198 | 0.76 |
| 0.5023 | 0.4 | 250 | 0.4286 | 0.8 |
| 0.4871 | 0.48 | 300 | 0.4294 | 0.8267 |
| 0.4513 | 0.56 | 350 | 0.4349 | 0.8133 |
| 0.4647 | 0.64 | 400 | 0.4046 | 0.8333 |
| 0.4827 | 0.72 | 450 | 0.4218 | 0.8333 |
| 0.4517 | 0.8 | 500 | 0.4093 | 0.82 |
| 0.4417 | 0.88 | 550 | 0.3999 | 0.84 |
| 0.4701 | 0.96 | 600 | 0.3779 | 0.8867 |
| 0.397 | 1.04 | 650 | 0.3730 | 0.8667 |
| 0.3377 | 1.12 | 700 | 0.3833 | 0.8333 |
| 0.411 | 1.2 | 750 | 0.3704 | 0.84 |
| 0.3796 | 1.28 | 800 | 0.3472 | 0.86 |
| 0.3523 | 1.36 | 850 | 0.3512 | 0.8733 |
| 0.3992 | 1.44 | 900 | 0.3712 | 0.84 |
| 0.3641 | 1.52 | 950 | 0.3718 | 0.82 |
| 0.3973 | 1.6 | 1000 | 0.3508 | 0.84 |
| 0.3576 | 1.68 | 1050 | 0.3600 | 0.86 |
| 0.3701 | 1.76 | 1100 | 0.3287 | 0.8667 |
| 0.3721 | 1.84 | 1150 | 0.3794 | 0.82 |
| 0.3673 | 1.92 | 1200 | 0.3378 | 0.8733 |
| 0.4223 | 2.0 | 1250 | 0.3508 | 0.86 |
| 0.2745 | 2.08 | 1300 | 0.3835 | 0.86 |
| 0.283 | 2.16 | 1350 | 0.3500 | 0.8533 |
| 0.2769 | 2.24 | 1400 | 0.3334 | 0.8733 |
| 0.2491 | 2.32 | 1450 | 0.3519 | 0.8867 |
| 0.3237 | 2.4 | 1500 | 0.3438 | 0.86 |
| 0.2662 | 2.48 | 1550 | 0.3513 | 0.8667 |
| 0.2423 | 2.56 | 1600 | 0.3413 | 0.8867 |
| 0.2655 | 2.64 | 1650 | 0.3126 | 0.8933 |
| 0.2516 | 2.72 | 1700 | 0.3333 | 0.8733 |
| 0.252 | 2.8 | 1750 | 0.3316 | 0.88 |
| 0.2872 | 2.88 | 1800 | 0.3227 | 0.9 |
| 0.306 | 2.96 | 1850 | 0.3383 | 0.8733 |
| 0.248 | 3.04 | 1900 | 0.3474 | 0.8733 |
| 0.1507 | 3.12 | 1950 | 0.4140 | 0.8667 |
| 0.1994 | 3.2 | 2000 | 0.3729 | 0.8533 |
| 0.167 | 3.28 | 2050 | 0.3782 | 0.8867 |
| 0.1872 | 3.36 | 2100 | 0.4352 | 0.8867 |
| 0.1611 | 3.44 | 2150 | 0.4511 | 0.8667 |
| 0.2338 | 3.52 | 2200 | 0.4244 | 0.8533 |
| 0.1538 | 3.6 | 2250 | 0.4226 | 0.8733 |
| 0.1561 | 3.68 | 2300 | 0.4126 | 0.88 |
| 0.2156 | 3.76 | 2350 | 0.4382 | 0.86 |
| 0.1684 | 3.84 | 2400 | 0.4969 | 0.86 |
| 0.1917 | 3.92 | 2450 | 0.4439 | 0.8667 |
| 0.1584 | 4.0 | 2500 | 0.4759 | 0.86 |
| 0.1038 | 4.08 | 2550 | 0.5042 | 0.8667 |
| 0.0983 | 4.16 | 2600 | 0.5527 | 0.8533 |
| 0.1404 | 4.24 | 2650 | 0.5801 | 0.84 |
| 0.0844 | 4.32 | 2700 | 0.5884 | 0.86 |
| 0.1347 | 4.4 | 2750 | 0.5865 | 0.8467 |
| 0.1373 | 4.48 | 2800 | 0.5915 | 0.8533 |
| 0.1506 | 4.56 | 2850 | 0.5976 | 0.8467 |
| 0.1007 | 4.64 | 2900 | 0.6678 | 0.82 |
| 0.1311 | 4.72 | 2950 | 0.6082 | 0.8533 |
| 0.1402 | 4.8 | 3000 | 0.6180 | 0.8467 |
| 0.1363 | 4.88 | 3050 | 0.6107 | 0.8533 |
| 0.0995 | 4.96 | 3100 | 0.6103 | 0.8533 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0
- Datasets 2.3.2
- Tokenizers 0.13.1
|