File size: 3,300 Bytes
ad7996e bd4dc9b ad7996e b9f5d99 ad7996e c3eb33f ad7996e fa86ba0 2a2a66f ad7996e 2a2a66f ad7996e d5451d0 c3911f9 ad7996e 2a2a66f fa86ba0 2a2a66f a33134e 2a2a66f ad7996e ee91324 ad7996e a33134e dbbe639 f864c95 dbbe639 7f2ed75 dbbe639 ad7996e f864c95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
language: fr
license: apache-2.0
tags:
- generated_from_trainer
- whisper-event
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
- wer_norm
base_model: openai/whisper-medium
model-index:
- name: openai/whisper-medium
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
config: fr
split: test
args: fr
metrics:
- type: wer
value: 11.1406
name: Wer
- type: wer_without_norm
value: 15.89689189275029
name: Wer (without normalization)
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# French Medium Whisper
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_11_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2664
- Wer (without normalization): 15.8969
- Wer (with normalization): **11.1406**
## Blog post
All information about this model in this blog post: [Speech-to-Text & IA | Transcreva qualquer áudio para o português com o Whisper (OpenAI)... sem nenhum custo!](https://medium.com/@pierre_guillou/speech-to-text-ia-transcreva-qualquer-%C3%A1udio-para-o-portugu%C3%AAs-com-o-whisper-openai-sem-ad0c17384681).
## New SOTA
The Normalized WER in the [OpenAI Whisper article](https://cdn.openai.com/papers/whisper.pdf) with the [Common Voice 9.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0) test dataset is 16.0.
As this test dataset is similar to the [Common Voice 11.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) test dataset used to evaluate our model (WER and WER Norm), it means that **our French Medium Whisper is better than the [Medium Whisper](https://huggingface.co/openai/whisper-medium) model at transcribing audios French in text**.
![OpenAI results with Whisper Medium and Test dataset of Commons Voice 9.0](https://huggingface.co/pierreguillou/whisper-medium-french/resolve/main/whisper_medium_french_wer_commonvoice9.png)
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Wer Norm |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:--------:|
| 0.2695 | 0.2 | 1000 | 0.3080 | 17.8083 | 12.9791 |
| 0.2099 | 0.4 | 2000 | 0.2981 | 17.4792 | 12.4242 |
| 0.1978 | 0.6 | 3000 | 0.2864 | 16.7767 | 12.0913 |
| 0.1455 | 0.8 | 4000 | 0.2752 | 16.4597 | 11.8966 |
| 0.1712 | 1.0 | 5000 | 0.2664 | 15.8969 | 11.1406 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2 |