--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - word-similarity - transformers widget: - source_sentence: "Provide a large table; this is a horizontal plane, and will represent the ground plane, viz." sentences: - "The President's plane landed at Goose Bay at 9:03 p.m." - "any line joining two points on a plane lies wholly on that plane" - "the flight was delayed due to trouble with the plane" example_title: "plane" --- # pierluigic/xl-lexeme This is model is based on [sentence-transformers](https://www.SBERT.net): It maps target word in sentences to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (WordTransformer) Install the library: ``` git clone git@github.com:pierluigic/xl-lexeme.git cd xl-lexeme pip3 install . ``` Then you can use the model like this: ```python from WordTransformer import WordTransformer, InputExample model = WordTransformer('pierluigic/xl-lexeme') examples = InputExample(texts="the quick fox jumps over the lazy dog", positions=[10,13]) fox_embedding = model.encode(examples) #The embedding of the target word "fox" ``` ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 16531 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters: ``` {'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 4132, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 1e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 16531.0, "weight_decay": 0.0 } ``` ## Full Model Architecture ``` SentenceTransformerTarget( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors ``` @inproceedings{cassotti-etal-2023-xl, title = "{XL}-{LEXEME}: {W}i{C} Pretrained Model for Cross-Lingual {LEX}ical s{EM}antic chang{E}", author = "Cassotti, Pierluigi and Siciliani, Lucia and DeGemmis, Marco and Semeraro, Giovanni and Basile, Pierpaolo", booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)", month = jul, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.acl-short.135", pages = "1577--1585" } ```