Phronetic Reasoning Models
Collection
The suite of reasoning models released by Phronetic AI
•
4 items
•
Updated
medRZN is a causal language model created for medical reasoning on open-ended questions.
⚠️ For research and educational purposes only — not for clinical use.
This model is not a substitute for professional medical advice, diagnosis, or treatment. Do not use it to make clinical decisions. Always consult a licensed clinician
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("phronetic-ai/medRZN")
model = AutoModelForCausalLM.from_pretrained("phronetic-ai/medRZN")
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
modelName = "phronetic-ai/medRZN"
model = AutoModelForCausalLM.from_pretrained(
modelName,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(modelName)
prompt = "A 45-year-old presents with chest pain. What are possible differentials?"
messages = [
{"role": "system", "content": "You are medRZN, a medical reasoning assistant. This is not medical advice."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
modelInputs = tokenizer([text], return_tensors="pt").to(model.device)
generatedIds = model.generate(
**modelInputs,
max_new_tokens=256
)
generatedIds = [
outputIds[len(inputIds):] for inputIds, outputIds in zip(modelInputs.input_ids, generatedIds)
]
response = tokenizer.batch_decode(generatedIds, skip_special_tokens=True)[0]
print(response)