--- language: - de license: mit datasets: - germaner metrics: - precision - recall - f1 - accuracy widget: - text: 'Philipp ist 26 Jahre alt und lebt in Nürnberg, Deutschland. Derzeit arbeitet er als Machine Learning Engineer und Tech Lead bei Hugging Face, um künstliche Intelligenz durch Open Source und Open Science zu demokratisieren. ' base_model: deepset/gbert-base model-index: - name: gbert-base-germaner results: - task: type: token-classification name: Token Classification dataset: name: germaner type: germaner args: default metrics: - type: precision value: 0.8520523797532108 name: precision - type: recall value: 0.8754204398447607 name: recall - type: f1 value: 0.8635783563042368 name: f1 - type: accuracy value: 0.976147969774973 name: accuracy --- # gbert-base-germaner This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on the germaner dataset. It achieves the following results on the evaluation set: - precision: 0.8521 - recall: 0.8754 - f1: 0.8636 - accuracy: 0.9761 If you want to learn how to fine-tune BERT yourself using Keras and Tensorflow check out this blog post: https://www.philschmid.de/huggingface-transformers-keras-tf ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - num_train_epochs: 5 - train_batch_size: 16 - eval_batch_size: 32 - learning_rate: 2e-05 - weight_decay_rate: 0.01 - num_warmup_steps: 0 - fp16: True ### Framework versions - Transformers 4.14.1 - Datasets 1.16.1 - Tokenizers 0.10.3