from typing import Any, Dict, List import os from flair.data import Sentence from flair.models import SequenceTagger class EndpointHandler(): def __init__( self, path: str, ): self.tagger = SequenceTagger.load(os.path.join(path,"pytorch_model.bin")) def __call__(self, inputs: str) -> List[Dict[str, Any]]: """ Args: inputs (:obj:`str`): a string containing some text Return: A :obj:`list`:. The object returned should be like [{"entity_group": "XXX", "word": "some word", "start": 3, "end": 6, "score": 0.82}] containing : - "entity_group": A string representing what the entity is. - "word": A substring of the original string that was detected as an entity. - "start": the offset within `input` leading to `answer`. context[start:stop] == word - "end": the ending offset within `input` leading to `answer`. context[start:stop] === word - "score": A score between 0 and 1 describing how confident the model is for this entity. """ inputs = data.pop("inputs", data) sentence: Sentence = Sentence(inputs) # Also show scores for recognized NEs self.tagger.predict(sentence, label_name="predicted") entities = [] for span in sentence.get_spans("predicted"): if len(span.tokens) == 0: continue current_entity = { "entity_group": span.tag, "word": span.text, "start": span.tokens[0].start_position, "end": span.tokens[-1].end_position, "score": span.score, } entities.append(current_entity) return entities