--- tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: MiniLMv2-L12-H384-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.925 --- # MiniLMv2-L12-H384-emotion This model is a fine-tuned version of [nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2069 - Accuracy: 0.925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8745 | 1.0 | 1000 | 0.6673 | 0.81 | | 0.3466 | 2.0 | 2000 | 0.2816 | 0.918 | | 0.2201 | 3.0 | 3000 | 0.2367 | 0.9215 | | 0.1761 | 4.0 | 4000 | 0.2069 | 0.925 | | 0.1435 | 5.0 | 5000 | 0.2089 | 0.922 | | 0.1454 | 6.0 | 6000 | 0.2168 | 0.923 | | 0.1041 | 7.0 | 7000 | 0.2081 | 0.924 | | 0.0953 | 8.0 | 8000 | 0.2133 | 0.9245 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3