--- license: apache-2.0 tags: - hf-asr-leaderboard - automatic-speech-recognition - NbAiLab/NST - generated_from_trainer metrics: - wer model-index: - name: whisper-NST2 results: [] --- # whisper-NST2 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the NBAILAB/NST - NO-CLOSE dataset. It achieves the following results on the evaluation set: - Loss: 0.2990 - Wer: 7.7537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 96 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.1846 | 0.1 | 1000 | 0.3460 | 14.9373 | | 0.1325 | 0.2 | 2000 | 0.3413 | 11.4025 | | 0.1135 | 0.3 | 3000 | 0.3428 | 12.6568 | | 0.0955 | 0.4 | 4000 | 0.3140 | 10.7184 | | 0.0871 | 0.5 | 5000 | 0.2907 | 9.4641 | | 0.0774 | 0.6 | 6000 | 0.3019 | 11.4025 | | 0.041 | 1.1 | 7000 | 0.2897 | 9.0080 | | 0.0306 | 1.2 | 8000 | 0.3013 | 7.6397 | | 0.0279 | 1.3 | 9000 | 0.2958 | 9.1220 | | 0.0239 | 1.4 | 10000 | 0.2990 | 7.7537 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1