--- license: apache-2.0 tags: - hf-asr-leaderboard - automatic-speech-recognition - NbAiLab/NST - generated_from_trainer metrics: - wer model-index: - name: whisper-NST-cons2e5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-NST-cons2e5 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the NBAILAB/NST - NO-CLOSE dataset. It achieves the following results on the evaluation set: - Loss: 0.3521 - Wer: 11.8586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.2517 | 0.1 | 1000 | 0.4131 | 18.4721 | | 0.1931 | 0.2 | 2000 | 0.3531 | 19.0422 | | 0.1598 | 0.3 | 3000 | 0.3605 | 16.8757 | | 0.1541 | 0.4 | 4000 | 0.3367 | 14.4812 | | 0.1443 | 0.5 | 5000 | 0.3274 | 13.3409 | | 0.1301 | 0.6 | 6000 | 0.3481 | 10.7184 | | 0.1266 | 0.7 | 7000 | 0.3452 | 12.9989 | | 0.1216 | 0.8 | 8000 | 0.3215 | 10.8324 | | 0.1121 | 0.9 | 9000 | 0.3160 | 11.5165 | | 0.1171 | 1.0 | 10000 | 0.3521 | 11.8586 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1