from __gin__ import dynamic_registration import tasks import __main__ as eval_script from t5.data import mixtures from t5x import partitioning from t5x import utils include "t5x/examples/t5/mt5/base.gin" CHECKPOINT_PATH = %gin.REQUIRED # passed via commandline SPLIT = %gin.REQUIRED # passed via commandline EVAL_OUTPUT_DIR = "./log/" DROPOUT_RATE = 0.0 # unused boilerplate MIXTURE_OR_TASK_NAME = "categorise" eval_script.evaluate: model = %MODEL # imported from separate gin file dataset_cfg = @utils.DatasetConfig() restore_checkpoint_cfg = @utils.RestoreCheckpointConfig() output_dir = %EVAL_OUTPUT_DIR partitioner = @partitioning.PjitPartitioner() utils.DatasetConfig: mixture_or_task_name = %MIXTURE_OR_TASK_NAME task_feature_lengths = {"inputs": 512, "targets": 2} split = %SPLIT batch_size = 16 shuffle = False seed = 42 partitioning.PjitPartitioner.num_partitions = 2 utils.RestoreCheckpointConfig: path = %CHECKPOINT_PATH mode = 'specific'