from datasets import load_dataset, concatenate_datasets from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer model_dir = "./" # ${MODEL_DIR} # load dataset dataset = load_dataset("json", data_files=["/mnt/disks/flaxdisk/corpus/norwegian_colossal_corpus_validation.json","/mnt/disks/flaxdisk/corpus/special_chars.json"], split='train') # Instantiate tokenizer tokenizer = ByteLevelBPETokenizer() def batch_iterator(batch_size=1000): for i in range(0, len(dataset), batch_size): yield dataset[i: i + batch_size]["text"] # Customized training tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[ "", "", "", "", "", ]) # Save files to disk tokenizer.save(f"{model_dir}/tokenizer.json")