import datetime import os, sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import glob import yaml import json import random import time from argparse import Namespace from pathlib import Path import numpy as np import torch import torch.nn as nn from torch.utils.data import DataLoader from utils.checkpoint import load_checkpoint import utils.logging as logging import utils.misc as utils from Generator import build_datasets from Trainer.visualizer import TaskVisualizer, FeatVisualizer from Trainer.models import build_model, build_optimizer, build_schedulers from Trainer.engine import train_one_epoch logger = logging.get_logger(__name__) # default & gpu cfg # submit_cfg_file = '/autofs/space/yogurt_003/users/pl629/code/MTBrainID/cfgs/submit.yaml' default_gen_cfg_file = '/autofs/space/yogurt_003/users/pl629/code/MTBrainID/cfgs/generator/default.yaml' default_train_cfg_file = '/autofs/space/yogurt_003/users/pl629/code/MTBrainID/cfgs/trainer/default_train.yaml' default_val_file = '/autofs/space/yogurt_003/users/pl629/code/MTBrainID/cfgs/trainer/default_val.yaml' gen_cfg_dir = '/autofs/space/yogurt_003/users/pl629/code/MTBrainID/cfgs/generator/train' train_cfg_dir = '/autofs/space/yogurt_003/users/pl629/code/MTBrainID/cfgs/trainer/train' def get_params_groups(model): all = [] for name, param in model.named_parameters(): if not param.requires_grad: continue # we do not regularize biases nor Norm parameters all.append(param) return [{'params': all}] def train(args): """ args: list of configs """ submit_args, gen_args, train_args = args utils.init_distributed_mode(submit_args) if torch.cuda.is_available(): if submit_args.num_gpus > torch.cuda.device_count(): submit_args.num_gpus = torch.cuda.device_count() assert ( submit_args.num_gpus <= torch.cuda.device_count() ), "Cannot use more GPU devices than available" else: submit_args.num_gpus = 0 if train_args.debug: submit_args.num_workers = 0 output_dir = utils.make_dir(train_args.out_dir) cfg_dir = utils.make_dir(os.path.join(output_dir, "cfg")) plt_dir = utils.make_dir(os.path.join(output_dir, "plt")) vis_train_dir = utils.make_dir(os.path.join(output_dir, "vis-train")) ckp_output_dir = utils.make_dir(os.path.join(output_dir, "ckp")) #ckp_epoch_dir = utils.make_dir(os.path.join(ckp_output_dir, "epoch")) yaml.dump( vars(submit_args), open(cfg_dir / 'config_submit.yaml', 'w'), allow_unicode=True) yaml.dump( vars(gen_args), open(cfg_dir / 'config_generator.yaml', 'w'), allow_unicode=True) yaml.dump( vars(train_args), open(cfg_dir / 'config_trainer.yaml', 'w'), allow_unicode=True) # ============ setup logging ... ============ logging.setup_logging(output_dir) logger.info("git:\n {}\n".format(utils.get_sha())) logger.info("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(submit_args)).items()))) logger.info("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(gen_args)).items()))) logger.info("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(train_args)).items()))) log_path = os.path.join(output_dir, 'log.txt') if submit_args.device is not None: # assign to specified device device = submit_args.device elif torch.cuda.is_available(): device = torch.cuda.current_device() else: device = 'cpu' logger.info('device: %s' % device) # fix the seed for reproducibility #seed = submit_args.seed + utils.get_rank() seed = int(time.time()) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True # ============ preparing data ... ============ dataset_dict = build_datasets(gen_args, device = gen_args.device_generator if gen_args.device_generator is not None else device) data_loader_dict = {} data_total = 0 for name in dataset_dict.keys(): if submit_args.num_gpus>1: sampler_train = utils.DistributedWeightedSampler(dataset_dict[name]) else: sampler_train = torch.utils.data.RandomSampler(dataset_dict[name]) data_loader_dict[name] = DataLoader( dataset_dict[name], batch_sampler=torch.utils.data.BatchSampler(sampler_train, train_args.batch_size, drop_last=True), #collate_fn=utils.collate_fn, # apply custom data cooker if needed num_workers=submit_args.num_workers) data_total += len(data_loader_dict[name]) logger.info('Dataset: {}'.format(name)) logger.info('Num of total training data: {}'.format(data_total)) visualizers = {'result': TaskVisualizer(gen_args, train_args)} if train_args.visualizer.feat_vis: visualizers['feature'] = FeatVisualizer(gen_args, train_args) # ============ building model ... ============ gen_args, train_args, model, processors, criterion, postprocessor = build_model(gen_args, train_args, device = device) # train: True; test: False model_without_ddp = model # Use multi-process data parallel model in the multi-gpu setting if submit_args.num_gpus > 1: logger.info('currect device: %s' % str(torch.cuda.current_device())) # Make model replica operate on the current device model = torch.nn.parallel.DistributedDataParallel( module=model, device_ids=[device], output_device=device, find_unused_parameters=True ) model_without_ddp = model.module # unwarp the model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) logger.info('Num of trainable model params: {}'.format(n_parameters)) # ============ preparing optimizer ... ============ scaler = torch.cuda.amp.GradScaler() param_dicts = get_params_groups(model_without_ddp) optimizer = build_optimizer(train_args, param_dicts) # ============ init schedulers ... ============ lr_scheduler, wd_scheduler = build_schedulers(train_args, data_total, train_args.lr, train_args.min_lr) logger.info(f"Optimizer and schedulers ready.") best_val_stats = None train_args.start_epoch = 0 # Load weights if provided if train_args.resume or train_args.eval_only: if train_args.ckp_path: ckp_path = train_args.ckp_path else: ckp_path = sorted(glob.glob(ckp_output_dir + '/*.pth')) train_args.start_epoch, best_val_stats = load_checkpoint(ckp_path, [model_without_ddp], optimizer, ['model'], exclude_key = 'supervised_seg') logger.info(f"Resume epoch: {train_args.start_epoch}") else: logger.info('Starting from scratch') if train_args.reset_epoch: train_args.start_epoch = 0 logger.info(f"Start epoch: {train_args.start_epoch}") # ============ start training ... ============ logger.info("Start training") start_time = time.time() for epoch in range(train_args.start_epoch, train_args.n_epochs): if os.path.isfile(os.path.join(ckp_output_dir,'checkpoint_latest.pth')): os.rename(os.path.join(ckp_output_dir,'checkpoint_latest.pth'), os.path.join(ckp_output_dir,'checkpoint_latest_bk.pth')) checkpoint_paths = [ckp_output_dir / 'checkpoint_latest.pth'] # ============ save model ... ============ #checkpoint_paths.append(ckp_epoch_dir / f"checkpoint_epoch_{epoch}.pth") for checkpoint_path in checkpoint_paths: utils.save_on_master({ 'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch, 'submit_args': submit_args, 'gen_args': gen_args, 'train_args': train_args, 'best_val_stats': best_val_stats }, checkpoint_path) # ============ training one epoch ... ============ if submit_args.num_gpus > 1: sampler_train.set_epoch(epoch) log_stats = train_one_epoch(epoch, gen_args, train_args, model_without_ddp, processors, criterion, data_loader_dict, scaler, optimizer, lr_scheduler, wd_scheduler, postprocessor, visualizers, vis_train_dir, device) # ============ writing logs ... ============ if utils.is_main_process(): with (Path(output_dir) / "log.txt").open("a") as f: f.write('epoch %s - ' % str(epoch).zfill(5)) f.write(json.dumps(log_stats) + "\n") # ============ plot training losses ... ============ if os.path.isfile(log_path): sum_losses = [0.] * (epoch + 1) for loss_name in criterion.loss_names: curr_epoches, curr_losses = utils.read_log(log_path, 'loss_' + loss_name) sum_losses = [sum_losses[i] + curr_losses[i] for i in range(len(curr_losses))] utils.plot_loss(curr_losses, os.path.join(utils.make_dir(plt_dir), 'loss_%s.png' % loss_name)) utils.plot_loss(sum_losses, os.path.join(utils.make_dir(plt_dir), 'loss_all.png')) total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) logger.info('Training time {}'.format(total_time_str)) ##################################################################################### if __name__ == '__main__': submit_args = utils.preprocess_cfg([submit_cfg_file]) gen_args = utils.preprocess_cfg([default_gen_cfg_file, sys.argv[1]], cfg_dir = gen_cfg_dir) train_args = utils.preprocess_cfg([default_train_cfg_file, default_val_file, sys.argv[2]], cfg_dir = train_cfg_dir) utils.launch_job(submit_args, gen_args, train_args, train)