pdich2085 commited on
Commit
27a8481
·
1 Parent(s): 240679c

Update handler.py

Browse files
Files changed (1) hide show
  1. handler.py +58 -3
handler.py CHANGED
@@ -19,10 +19,16 @@ class EndpointHandler():
19
 
20
  def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
21
  try:
22
- image_bytes = data.get("inputs", None)
23
 
24
- # Convert base64 encoded image string to a PIL Image
25
- raw_image = Image.open(BytesIO(image_bytes))
 
 
 
 
 
 
26
 
27
  # Ensure the image is in RGB mode (if necessary)
28
  if raw_image.mode != "RGB":
@@ -42,3 +48,52 @@ class EndpointHandler():
42
  # Log the error for better tracking
43
  print(f"Error during processing: {str(e)}")
44
  return {"caption": "", "error": str(e)}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
21
  try:
22
+ image_data = data.get("inputs", None)
23
 
24
+ # Convert base64 encoded image string to bytes
25
+ image_bytes = base64.b64decode(image_data)
26
+
27
+ # Create a BytesIO object from the bytes data
28
+ image_buffer = BytesIO(image_bytes)
29
+
30
+ # Open the image from the buffer
31
+ raw_image = Image.open(image_buffer)
32
 
33
  # Ensure the image is in RGB mode (if necessary)
34
  if raw_image.mode != "RGB":
 
48
  # Log the error for better tracking
49
  print(f"Error during processing: {str(e)}")
50
  return {"caption": "", "error": str(e)}
51
+
52
+
53
+
54
+
55
+
56
+ # from PIL import Image
57
+ # from typing import Dict, Any
58
+ # import torch
59
+ # import base64
60
+ # from io import BytesIO
61
+ # from transformers import BlipForConditionalGeneration, BlipProcessor
62
+
63
+ # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
64
+
65
+ # class EndpointHandler():
66
+ # def __init__(self, path=""):
67
+ # self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
68
+ # self.model = BlipForConditionalGeneration.from_pretrained(
69
+ # "Salesforce/blip-image-captioning-large"
70
+ # ).to(device)
71
+ # self.model.eval()
72
+ # self.max_length = 16
73
+ # self.num_beams = 4
74
+
75
+ # def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
76
+ # try:
77
+ # image_bytes = data.get("inputs", None)
78
+
79
+ # # Convert base64 encoded image string to a PIL Image
80
+ # raw_image = Image.open(BytesIO(image_bytes))
81
+
82
+ # # Ensure the image is in RGB mode (if necessary)
83
+ # if raw_image.mode != "RGB":
84
+ # raw_image = raw_image.convert(mode="RGB")
85
+
86
+ # # Extract pixel values and move them to the device
87
+ # pixel_values = self.processor(raw_image, return_tensors="pt").pixel_values.to(device)
88
+
89
+ # # Generate the caption
90
+ # gen_kwargs = {"max_length": self.max_length, "num_beams": self.num_beams}
91
+ # output_ids = self.model.generate(pixel_values, **gen_kwargs)
92
+
93
+ # caption = self.processor.batch_decode(output_ids[0], skip_special_tokens=True).strip()
94
+
95
+ # return {"caption": caption}
96
+ # except Exception as e:
97
+ # # Log the error for better tracking
98
+ # print(f"Error during processing: {str(e)}")
99
+ # return {"caption": "", "error": str(e)}