--- language: eu datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Large 53 Basque by pcuenq results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice eu type: common_voice args: eu metrics: - name: Test WER type: wer value: 15.34 --- # Wav2Vec2-Large-XLSR-53-EU Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Basque using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "eu", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-eu") model = Wav2Vec2ForCTC.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-eu") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Basque test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "eu", split="test") wer = load_metric("wer") model_name = "pcuenq/wav2vec2-large-xlsr-53-eu" processor = Wav2Vec2Processor.from_pretrained(model_name) model = Wav2Vec2ForCTC.from_pretrained(model_name) model.to("cuda") ## Text pre-processing chars_to_ignore_regex = '[\,\¿\?\.\¡\!\-\;\:\"\“\%\‘\”\\…\’\ː\'\‹\›\`\´\®\—\→]' chars_to_ignore_pattern = re.compile(chars_to_ignore_regex) def remove_special_characters(batch): batch["sentence"] = chars_to_ignore_pattern.sub('', batch["sentence"]).lower() + " " return batch ## Audio pre-processing import librosa def speech_file_to_array_fn(batch): speech_array, sample_rate = torchaudio.load(batch["path"]) batch["speech"] = librosa.resample(speech_array.squeeze().numpy(), sample_rate, 16_000) return batch # Text transformation and audio resampling def cv_prepare(batch): batch = remove_special_characters(batch) batch = speech_file_to_array_fn(batch) return batch # Number of CPUs or None num_proc = 16 test_dataset = test_dataset.map(cv_prepare, remove_columns=['path'], num_proc=num_proc) def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) # WER Metric computation print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 15.34 % ## Training The Common Voice `train` and `validation` datasets were used for training. Training was performed for 22 + 20 epochs with the following parameters: - Batch size 16, 2 gradient accumulation steps. - Learning rate: 2.5e-4 - Activation dropout: 0.05 - Attention dropout: 0.1 - Hidden dropout: 0.05 - Feature proj. dropout: 0.05 - Mask time probability: 0.08 - Layer dropout: 0.05