File size: 4,364 Bytes
661b20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
---
language: eu
datasets:
- common_voice
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Large 53 Basque by pcuenq 
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice eu
      type: common_voice
      args: eu
    metrics:
       - name: Test WER
         type: wer
         value: 15.34
---

# Wav2Vec2-Large-XLSR-53-EU

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Basque using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
When using this model, make sure that your speech input is sampled at 16kHz.

## Usage

The model can be used directly (without a language model) as follows:

```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "eu", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-eu")
model = Wav2Vec2ForCTC.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-eu")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
	speech_array, sampling_rate = torchaudio.load(batch["path"])
	batch["speech"] = resampler(speech_array).squeeze().numpy()
	return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
	logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```


## Evaluation

The model can be evaluated as follows on the Basque test data of Common Voice.

```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "eu", split="test")
wer = load_metric("wer")

model_name = "pcuenq/wav2vec2-large-xlsr-53-eu"

processor = Wav2Vec2Processor.from_pretrained(model_name)
model = Wav2Vec2ForCTC.from_pretrained(model_name)
model.to("cuda")

## Text pre-processing

chars_to_ignore_regex = '[\,\¿\?\.\¡\!\-\;\:\"\“\%\‘\”\\…\’\ː\'\‹\›\`\´\®\—\→]'
chars_to_ignore_pattern = re.compile(chars_to_ignore_regex)

def remove_special_characters(batch):
    batch["sentence"] = chars_to_ignore_pattern.sub('', batch["sentence"]).lower() + " "
    return batch

## Audio pre-processing

import librosa
def speech_file_to_array_fn(batch):
    speech_array, sample_rate = torchaudio.load(batch["path"])
    batch["speech"] = librosa.resample(speech_array.squeeze().numpy(), sample_rate, 16_000)
    return batch

# Text transformation and audio resampling
def cv_prepare(batch):
    batch = remove_special_characters(batch)
    batch = speech_file_to_array_fn(batch)
    return batch

# Number of CPUs or None
num_proc = 16
test_dataset = test_dataset.map(cv_prepare, remove_columns=['path'], num_proc=num_proc)

def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

# WER Metric computation
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```

**Test Result**: 15.34 %

## Training

The Common Voice `train` and `validation` datasets were used for training. Training was performed for 22 + 20 epochs with the following parameters:

- Batch size 16, 2 gradient accumulation steps.
- Learning rate: 2.5e-4
- Activation dropout: 0.05
- Attention dropout: 0.1
- Hidden dropout: 0.05
- Feature proj. dropout: 0.05
- Mask time probability: 0.08
- Layer dropout: 0.05