--- license: mit tags: - generated_from_trainer datasets: - kantinewinkel model-index: - name: kantinewinkel-repo results: [] --- # kantinewinkel-repo This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the kantinewinkel dataset. It achieves the following results on the evaluation set: - Loss: 0.0083 - Cash: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} - Date: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 44} - Subtotal: {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} - Total: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} - Overall Precision: 0.9886 - Overall Recall: 1.0 - Overall F1: 0.9943 - Overall Accuracy: 0.9991 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cash | Date | Subtotal | Total | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------:|:----------------------------------------------------------:|:--------------------------------------------------------------------------:|:----------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.0476 | 8.7 | 200 | 0.0083 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 44} | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | 0.9886 | 1.0 | 0.9943 | 0.9991 | | 0.0003 | 17.39 | 400 | 0.0092 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 44} | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | 0.9886 | 1.0 | 0.9943 | 0.9991 | | 0.0005 | 26.09 | 600 | 0.0080 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 44} | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | 0.9886 | 1.0 | 0.9943 | 0.9991 | | 0.0 | 34.78 | 800 | 0.0082 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 44} | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | 0.9886 | 1.0 | 0.9943 | 0.9991 | | 0.0001 | 43.48 | 1000 | 0.0081 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 44} | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | 0.9886 | 1.0 | 0.9943 | 0.9991 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.13.1 - Datasets 2.12.0 - Tokenizers 0.13.2