File size: 11,296 Bytes
19ed37d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
from __future__ import annotations
"""sedd_wrapper.py
=========================================
This module provides a minimal HuggingFace-compatible wrapper around the
`SEDD` architecture that is implemented in :pyfile:`model/transformer.py`.
The wrapper closely follows the design used in the Aero implementation that
lives in this code-base (see :pyfile:`configuration_aero.py` and
:pyfile:`modeling_aero.py`). Concretely we expose three public objects:
* ``SEDDConfig`` A :class:`transformers.PretrainedConfig` subclass that
stores the hyper-parameters needed to instantiate a ``SEDD`` model.
* ``SEDDModel`` A :class:`transformers.PreTrainedModel` subclass that
internally contains an instance of the original ``SEDD`` network and maps
from ``input_ids`` + ``sigma`` to the vocabulary logits.
* ``SEDDOutput`` A thin :class:`transformers.modeling_outputs.ModelOutput`
dataclass that mirrors the usual "logits / loss" structure.
With this wrapper a trained model checkpoint can be pushed to / loaded from
π€ Hub via ``SEDDModel.push_to_hub`` / ``SEDDModel.from_pretrained`` the same
way as any other ``transformers`` model.
"""
from dataclasses import dataclass
from typing import Optional, Tuple, List, Dict, Any, Union
import torch
from torch import nn
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import ModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
# Original SEDD implementation
from model.transformer import SEDD as _OrigSEDD
try:
from omegaconf import OmegaConf
except ImportError: # pragma: no cover β omegaconf is an explicit dependency of SEDD
OmegaConf = None # type: ignore
logger = logging.get_logger(__name__)
###############################################################################
# Configuration #
###############################################################################
class SEDDConfig(PretrainedConfig):
"""Configuration class for the SEDD architecture.
The defaults reproduce *roughly* the "small" configuration shipped in
``configs/model/small.yaml``. Additional keys that are present in the
original Hydra config but not required for instantiation (e.g. *training*
hyper-parameters) are deliberately omitted here β they can still be stored
as *extra* fields in the underlying JSON if a user wishes to preserve them.
"""
model_type: str = "sedd"
def __init__(
self,
*,
tokens: int = 50257,
# graph section
graph_type: str = "absorb",
# model section (mirrors configs/model/*.yaml)
model_hidden_size: int = 768,
model_cond_dim: int = 128,
model_length: int = 1024,
model_n_blocks: int = 12,
model_n_heads: int = 12,
model_scale_by_sigma: bool = True,
model_dropout: float = 0.10,
# miscellaneous
tie_word_embeddings: bool = False,
**kwargs,
) -> None:
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
# Top-level attributes (kept flat for simplicity)
self.tokens = tokens
self.graph_type = graph_type
# Model hyper-parameters
self.model_hidden_size = model_hidden_size
self.model_cond_dim = model_cond_dim
self.model_length = model_length
self.model_n_blocks = model_n_blocks
self.model_n_heads = model_n_heads
self.model_scale_by_sigma = model_scale_by_sigma
self.model_dropout = model_dropout
# ---------------------------------------------------------------------
# Serialization helpers β these optionally bridge to the original Hydra
# config structure that the reference implementation expects.
# ---------------------------------------------------------------------
def to_hydra(self):
"""Convert this *flat* config to the nested OmegaConf structure that
the reference ``SEDD`` implementation expects.
"""
if OmegaConf is None:
raise RuntimeError("`omegaconf` is required to build a Hydra config")
nested: Dict[str, Any] = {
"tokens": self.tokens,
"graph": {
"type": self.graph_type,
},
"model": {
"hidden_size": self.model_hidden_size,
"cond_dim": self.model_cond_dim,
"length": self.model_length,
"n_blocks": self.model_n_blocks,
"n_heads": self.model_n_heads,
"scale_by_sigma": self.model_scale_by_sigma,
"dropout": self.model_dropout,
},
}
return OmegaConf.create(nested)
###############################################################################
# Output container #
###############################################################################
@dataclass
class SEDDOutput(ModelOutput):
"""Standard output for :class:`SEDDModel`.
Attributes
----------
loss:
*Optional* scalar returned when ``labels`` are provided.
logits:
The raw vocabulary logits computed by the model of shape
``(batch_size, sequence_length, vocab_size)``.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor | None = None
###############################################################################
# Model #
###############################################################################
class SEDDModel(PreTrainedModel):
"""HuggingFace *Transformers* wrapper around the original ``SEDD`` model."""
config_class = SEDDConfig
base_model_prefix = "score_model"
_no_split_modules: List[str] = [
"DDiTBlock", # ensure these blocks are not split when using FSDP/TP
]
def __init__(self, config: SEDDConfig):
super().__init__(config)
# ------------------------------------------------------------------
# Instantiate the original SEDD architecture using the Hydra cfg that
# the implementation expects.
# ------------------------------------------------------------------
if OmegaConf is None:
raise RuntimeError("`omegaconf` is required to instantiate SEDD")
hydra_cfg = config.to_hydra()
self.score_model = _OrigSEDD(hydra_cfg)
# Make sure parameters are created on the right device / dtype.
self.post_init()
# ------------------------------------------------------------------
# Forward pass
# ------------------------------------------------------------------
def forward(
self,
input_ids: torch.LongTensor,
sigma: torch.FloatTensor,
labels: Optional[torch.LongTensor] = None,
**kwargs: Any,
) -> Union[SEDDOutput, Tuple]:
"""Run a forward pass.
Parameters
----------
input_ids:
Token indices of shape ``(batch_size, seq_len)``.
sigma:
Noise level ("time-step") of shape ``(batch_size,)``.
labels:
*Optional* label tensor used to compute a cross-entropy training
loss. If provided the returned :class:`SEDDOutput` will contain a
``loss`` field.
"""
logits = self.score_model(indices=input_ids, sigma=sigma)
loss: Optional[torch.Tensor] = None
if labels is not None:
# Standard CE loss over the last dimension (vocab)
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
if not self.config.return_dict:
output: Tuple[Any, ...] = (logits,)
return ((loss,) + output) if loss is not None else output
return SEDDOutput(loss=loss, logits=logits)
# ------------------------------------------------------------------
# Weight loading helpers β we delegate to the *original* SEDD mixin so that
# checkpoints trained with the previous implementation can be re-used.
# ------------------------------------------------------------------
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: str,
*model_args: Any,
**kwargs: Any,
) -> "SEDDModel":
"""Overrides the default method to allow loading legacy SEDD checkpoints
whose weights are saved via ``torch.save({'model': state_dict, ...})``.
"""
try:
# First try the regular *transformers* loading routine β this will
# succeed if the repository follows the standard file-naming
# conventions (i.e. contains a ``pytorch_model.bin`` / safetensors).
return super().from_pretrained(
pretrained_model_name_or_path, *model_args, **kwargs
)
except (EnvironmentError, RuntimeError) as e:
logger.info(
"Falling back to legacy SEDD checkpoint format because standard "
"loading raised: %s", e,
)
# ----------------------------------------------------------
# 1. Load config the usual way so we get a `SEDDConfig` instance.
# ----------------------------------------------------------
config = kwargs.pop("config", None) or SEDDConfig.from_pretrained(
pretrained_model_name_or_path
)
model = cls(config, *model_args, **kwargs)
# ----------------------------------------------------------
# 2. Attempt to locate the legacy *.pth* checkpoint and load it.
# ----------------------------------------------------------
import os
import torch as _torch
checkpoint_path = os.path.join(
pretrained_model_name_or_path, "checkpoints-meta", "checkpoint.pth"
)
if not os.path.isfile(checkpoint_path):
raise FileNotFoundError(
"Could not find legacy SEDD checkpoint at " f"{checkpoint_path}"
)
ckpt = _torch.load(checkpoint_path, map_location="cpu")
state_dict = ckpt.get("model", ckpt)
# Strip prefix if present (sometimes stored under "module.")
state_dict = {
k.replace("module.", ""): v for k, v in state_dict.items()
}
missing, unexpected = model.load_state_dict(state_dict, strict=False)
if missing:
logger.warning("Missing keys when loading SEDD weights: %s", missing)
if unexpected:
logger.warning(
"Unexpected keys when loading SEDD weights: %s", unexpected
)
return model
###############################################################################
# Public API #
###############################################################################
__all__ = [
"SEDDConfig",
"SEDDModel",
"SEDDOutput",
]
|