pawan2411 commited on
Commit
7a57985
1 Parent(s): 88b7fb2

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/mpnet-base
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:24901
13
+ - loss:SoftmaxLoss
14
+ widget:
15
+ - source_sentence: Cryptocurrency holders are being exploited, with whales creating
16
+ more coins and profiting from their value.
17
+ sentences:
18
+ - Buyer purchases cryptocurrency from seller in exchange.
19
+ - Price fluctuates due to fear and uncertainty, only time will reveal its direction.
20
+ - New user's post removed due to lack of required **karma** and account age.
21
+ - source_sentence: User seeks assistance with retrieving funds from a cryptocurrency
22
+ investment platform.
23
+ sentences:
24
+ - Bot removed post for being too short, resubmit with more characters.
25
+ - People enjoy walking while searching for digital currency in their area.
26
+ - Cryptocurrency project's legitimacy unlikely due to complexity and scrutiny in
27
+ parachain development and ecosystem interactions.
28
+ - source_sentence: Large cryptocurrencies' market dominance may change as new projects
29
+ emerge with exceptional utility and marketing.
30
+ sentences:
31
+ - Market experiencing significant decline.
32
+ - Decentralized concept in crypto is main idea, but most coins are centralized.
33
+ - Cryptocurrency users share information.
34
+ - source_sentence: Use XLM for low-cost transactions between exchanges, saving on
35
+ fees.
36
+ sentences:
37
+ - Exchanges should automate process for increased activity.
38
+ - Investment taxes vary by country, but generally apply after withdrawal, with losses
39
+ still needing declaration.
40
+ - Use basic version, buy coins with credit card.
41
+ - source_sentence: New user seeks advice on storing Bitcoin and USDT on WazirX or
42
+ Binance, considering pros and cons.
43
+ sentences:
44
+ - Buy cryptocurrency directly with credit card, but high fee makes Indian exchange
45
+ a better option.
46
+ - 'Cryptocurrency prices: Bitcoin, Ethereum, and others fluctuate.'
47
+ - Investor has faith in Tezos, making strategic moves.
48
+ ---
49
+
50
+ # SentenceTransformer based on microsoft/mpnet-base
51
+
52
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
53
+
54
+ ## Model Details
55
+
56
+ ### Model Description
57
+ - **Model Type:** Sentence Transformer
58
+ - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
59
+ - **Maximum Sequence Length:** 512 tokens
60
+ - **Output Dimensionality:** 768 tokens
61
+ - **Similarity Function:** Cosine Similarity
62
+ <!-- - **Training Dataset:** Unknown -->
63
+ <!-- - **Language:** Unknown -->
64
+ <!-- - **License:** Unknown -->
65
+
66
+ ### Model Sources
67
+
68
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
69
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
70
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
71
+
72
+ ### Full Model Architecture
73
+
74
+ ```
75
+ SentenceTransformer(
76
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
77
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
78
+ )
79
+ ```
80
+
81
+ ## Usage
82
+
83
+ ### Direct Usage (Sentence Transformers)
84
+
85
+ First install the Sentence Transformers library:
86
+
87
+ ```bash
88
+ pip install -U sentence-transformers
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+ ```python
93
+ from sentence_transformers import SentenceTransformer
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SentenceTransformer("pawan2411/crypto_nli")
97
+ # Run inference
98
+ sentences = [
99
+ 'New user seeks advice on storing Bitcoin and USDT on WazirX or Binance, considering pros and cons.',
100
+ 'Buy cryptocurrency directly with credit card, but high fee makes Indian exchange a better option.',
101
+ 'Investor has faith in Tezos, making strategic moves.',
102
+ ]
103
+ embeddings = model.encode(sentences)
104
+ print(embeddings.shape)
105
+ # [3, 768]
106
+
107
+ # Get the similarity scores for the embeddings
108
+ similarities = model.similarity(embeddings, embeddings)
109
+ print(similarities.shape)
110
+ # [3, 3]
111
+ ```
112
+
113
+ <!--
114
+ ### Direct Usage (Transformers)
115
+
116
+ <details><summary>Click to see the direct usage in Transformers</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Downstream Usage (Sentence Transformers)
123
+
124
+ You can finetune this model on your own dataset.
125
+
126
+ <details><summary>Click to expand</summary>
127
+
128
+ </details>
129
+ -->
130
+
131
+ <!--
132
+ ### Out-of-Scope Use
133
+
134
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
135
+ -->
136
+
137
+ <!--
138
+ ## Bias, Risks and Limitations
139
+
140
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
141
+ -->
142
+
143
+ <!--
144
+ ### Recommendations
145
+
146
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
147
+ -->
148
+
149
+ ## Training Details
150
+
151
+ ### Training Dataset
152
+
153
+ #### Unnamed Dataset
154
+
155
+
156
+ * Size: 24,901 training samples
157
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
158
+ * Approximate statistics based on the first 1000 samples:
159
+ | | sentence_0 | sentence_1 | label |
160
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
161
+ | type | string | string | int |
162
+ | details | <ul><li>min: 6 tokens</li><li>mean: 21.86 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.67 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>0: ~83.50%</li><li>1: ~16.50%</li></ul> |
163
+ * Samples:
164
+ | sentence_0 | sentence_1 | label |
165
+ |:------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------|
166
+ | <code>User asks about tracing crypto swaps and process of exchanging digital currencies.</code> | <code>"Private cryptocurrency swap can't be traced."</code> | <code>0</code> |
167
+ | <code>Cryptocurrency project with weak fundamentals deserves to fail, cherish coins before next market downturn.</code> | <code>"Trust information in this community."</code> | <code>0</code> |
168
+ | <code>New user seeks advice on using crypto credit cards in daily life.</code> | <code>User uses digital wallet for cryptocurrency transactions, earning cashback rewards.</code> | <code>1</code> |
169
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
170
+
171
+ ### Training Hyperparameters
172
+ #### Non-Default Hyperparameters
173
+
174
+ - `per_device_train_batch_size`: 64
175
+ - `per_device_eval_batch_size`: 64
176
+ - `num_train_epochs`: 10
177
+ - `multi_dataset_batch_sampler`: round_robin
178
+
179
+ #### All Hyperparameters
180
+ <details><summary>Click to expand</summary>
181
+
182
+ - `overwrite_output_dir`: False
183
+ - `do_predict`: False
184
+ - `eval_strategy`: no
185
+ - `prediction_loss_only`: True
186
+ - `per_device_train_batch_size`: 64
187
+ - `per_device_eval_batch_size`: 64
188
+ - `per_gpu_train_batch_size`: None
189
+ - `per_gpu_eval_batch_size`: None
190
+ - `gradient_accumulation_steps`: 1
191
+ - `eval_accumulation_steps`: None
192
+ - `learning_rate`: 5e-05
193
+ - `weight_decay`: 0.0
194
+ - `adam_beta1`: 0.9
195
+ - `adam_beta2`: 0.999
196
+ - `adam_epsilon`: 1e-08
197
+ - `max_grad_norm`: 1
198
+ - `num_train_epochs`: 10
199
+ - `max_steps`: -1
200
+ - `lr_scheduler_type`: linear
201
+ - `lr_scheduler_kwargs`: {}
202
+ - `warmup_ratio`: 0.0
203
+ - `warmup_steps`: 0
204
+ - `log_level`: passive
205
+ - `log_level_replica`: warning
206
+ - `log_on_each_node`: True
207
+ - `logging_nan_inf_filter`: True
208
+ - `save_safetensors`: True
209
+ - `save_on_each_node`: False
210
+ - `save_only_model`: False
211
+ - `restore_callback_states_from_checkpoint`: False
212
+ - `no_cuda`: False
213
+ - `use_cpu`: False
214
+ - `use_mps_device`: False
215
+ - `seed`: 42
216
+ - `data_seed`: None
217
+ - `jit_mode_eval`: False
218
+ - `use_ipex`: False
219
+ - `bf16`: False
220
+ - `fp16`: False
221
+ - `fp16_opt_level`: O1
222
+ - `half_precision_backend`: auto
223
+ - `bf16_full_eval`: False
224
+ - `fp16_full_eval`: False
225
+ - `tf32`: None
226
+ - `local_rank`: 0
227
+ - `ddp_backend`: None
228
+ - `tpu_num_cores`: None
229
+ - `tpu_metrics_debug`: False
230
+ - `debug`: []
231
+ - `dataloader_drop_last`: False
232
+ - `dataloader_num_workers`: 0
233
+ - `dataloader_prefetch_factor`: None
234
+ - `past_index`: -1
235
+ - `disable_tqdm`: False
236
+ - `remove_unused_columns`: True
237
+ - `label_names`: None
238
+ - `load_best_model_at_end`: False
239
+ - `ignore_data_skip`: False
240
+ - `fsdp`: []
241
+ - `fsdp_min_num_params`: 0
242
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
243
+ - `fsdp_transformer_layer_cls_to_wrap`: None
244
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
245
+ - `deepspeed`: None
246
+ - `label_smoothing_factor`: 0.0
247
+ - `optim`: adamw_torch
248
+ - `optim_args`: None
249
+ - `adafactor`: False
250
+ - `group_by_length`: False
251
+ - `length_column_name`: length
252
+ - `ddp_find_unused_parameters`: None
253
+ - `ddp_bucket_cap_mb`: None
254
+ - `ddp_broadcast_buffers`: False
255
+ - `dataloader_pin_memory`: True
256
+ - `dataloader_persistent_workers`: False
257
+ - `skip_memory_metrics`: True
258
+ - `use_legacy_prediction_loop`: False
259
+ - `push_to_hub`: False
260
+ - `resume_from_checkpoint`: None
261
+ - `hub_model_id`: None
262
+ - `hub_strategy`: every_save
263
+ - `hub_private_repo`: False
264
+ - `hub_always_push`: False
265
+ - `gradient_checkpointing`: False
266
+ - `gradient_checkpointing_kwargs`: None
267
+ - `include_inputs_for_metrics`: False
268
+ - `eval_do_concat_batches`: True
269
+ - `fp16_backend`: auto
270
+ - `push_to_hub_model_id`: None
271
+ - `push_to_hub_organization`: None
272
+ - `mp_parameters`:
273
+ - `auto_find_batch_size`: False
274
+ - `full_determinism`: False
275
+ - `torchdynamo`: None
276
+ - `ray_scope`: last
277
+ - `ddp_timeout`: 1800
278
+ - `torch_compile`: False
279
+ - `torch_compile_backend`: None
280
+ - `torch_compile_mode`: None
281
+ - `dispatch_batches`: None
282
+ - `split_batches`: None
283
+ - `include_tokens_per_second`: False
284
+ - `include_num_input_tokens_seen`: False
285
+ - `neftune_noise_alpha`: None
286
+ - `optim_target_modules`: None
287
+ - `batch_eval_metrics`: False
288
+ - `eval_on_start`: False
289
+ - `batch_sampler`: batch_sampler
290
+ - `multi_dataset_batch_sampler`: round_robin
291
+
292
+ </details>
293
+
294
+ ### Training Logs
295
+ | Epoch | Step | Training Loss |
296
+ |:------:|:----:|:-------------:|
297
+ | 1.2821 | 500 | 0.3912 |
298
+ | 2.5641 | 1000 | 0.3157 |
299
+ | 3.8462 | 1500 | 0.2926 |
300
+ | 5.1282 | 2000 | 0.2788 |
301
+ | 6.4103 | 2500 | 0.2599 |
302
+ | 7.6923 | 3000 | 0.2428 |
303
+ | 8.9744 | 3500 | 0.2314 |
304
+ | 1.2821 | 500 | 0.2333 |
305
+ | 2.5641 | 1000 | 0.2292 |
306
+ | 3.8462 | 1500 | 0.1987 |
307
+ | 5.1282 | 2000 | 0.1757 |
308
+ | 6.4103 | 2500 | 0.1578 |
309
+ | 7.6923 | 3000 | 0.1413 |
310
+ | 8.9744 | 3500 | 0.1258 |
311
+ | 1.2821 | 500 | 0.1086 |
312
+ | 2.5641 | 1000 | 0.1048 |
313
+ | 3.8462 | 1500 | 0.0917 |
314
+ | 5.1282 | 2000 | 0.0805 |
315
+ | 6.4103 | 2500 | 0.0712 |
316
+ | 7.6923 | 3000 | 0.0673 |
317
+ | 8.9744 | 3500 | 0.0646 |
318
+ | 1.2821 | 500 | 0.0505 |
319
+ | 2.5641 | 1000 | 0.0511 |
320
+ | 3.8462 | 1500 | 0.046 |
321
+ | 5.1282 | 2000 | 0.0415 |
322
+ | 6.4103 | 2500 | 0.0396 |
323
+ | 7.6923 | 3000 | 0.0357 |
324
+ | 8.9744 | 3500 | 0.0382 |
325
+ | 1.2821 | 500 | 0.0252 |
326
+ | 2.5641 | 1000 | 0.029 |
327
+ | 3.8462 | 1500 | 0.0247 |
328
+ | 5.1282 | 2000 | 0.0233 |
329
+ | 6.4103 | 2500 | 0.0228 |
330
+ | 7.6923 | 3000 | 0.0218 |
331
+ | 8.9744 | 3500 | 0.0251 |
332
+ | 1.2821 | 500 | 0.0158 |
333
+ | 2.5641 | 1000 | 0.0184 |
334
+ | 3.8462 | 1500 | 0.0165 |
335
+ | 5.1282 | 2000 | 0.0139 |
336
+ | 6.4103 | 2500 | 0.0145 |
337
+ | 7.6923 | 3000 | 0.0139 |
338
+ | 8.9744 | 3500 | 0.0164 |
339
+
340
+
341
+ ### Framework Versions
342
+ - Python: 3.10.12
343
+ - Sentence Transformers: 3.0.1
344
+ - Transformers: 4.42.4
345
+ - PyTorch: 2.3.1+cu121
346
+ - Accelerate: 0.32.1
347
+ - Datasets: 2.20.0
348
+ - Tokenizers: 0.19.1
349
+
350
+ ## Citation
351
+
352
+ ### BibTeX
353
+
354
+ #### Sentence Transformers and SoftmaxLoss
355
+ ```bibtex
356
+ @inproceedings{reimers-2019-sentence-bert,
357
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
358
+ author = "Reimers, Nils and Gurevych, Iryna",
359
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
360
+ month = "11",
361
+ year = "2019",
362
+ publisher = "Association for Computational Linguistics",
363
+ url = "https://arxiv.org/abs/1908.10084",
364
+ }
365
+ ```
366
+
367
+ <!--
368
+ ## Glossary
369
+
370
+ *Clearly define terms in order to be accessible across audiences.*
371
+ -->
372
+
373
+ <!--
374
+ ## Model Card Authors
375
+
376
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
377
+ -->
378
+
379
+ <!--
380
+ ## Model Card Contact
381
+
382
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
383
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mpnet-base",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.4",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d708199b5ecc8d3e910598df5652e55a0946fa2b07e54d7b7d466243e21823b1
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "model_max_length": 512,
59
+ "pad_token": "<pad>",
60
+ "sep_token": "</s>",
61
+ "strip_accents": null,
62
+ "tokenize_chinese_chars": true,
63
+ "tokenizer_class": "MPNetTokenizer",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff