Ars model To Run: from peft import PeftModel from transformers import LLaMATokenizer, LLaMAForCausalLM, GenerationConfig tokenizer = LLaMATokenizer.from_pretrained("decapoda-research/llama-7b-hf") model = LLaMAForCausalLM.from_pretrained( "decapoda-research/llama-7b-hf", load_in_8bit=True, device_map="auto", ) model = PeftModel.from_pretrained(model, "patulya/alpaca7B-lora") PROMPT = """Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {your_instruction} ### Response:""" inputs = tokenizer( PROMPT, return_tensors="pt", ) input_ids = inputs["input_ids"].cuda() generation_config = GenerationConfig( temperature=0.6, top_p=0.95, repetition_penalty=1.15, ) print("Generating...") generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=128, ) for s in generation_output.sequences: print(tokenizer.decode(s))