--- language: en license: apache-2.0 tags: - automatic-speech-recognition - timit_asr - generated_from_trainer datasets: - timit_asr model-index: - name: sew-d-small-100k-timit results: [] --- # sew-d-small-100k-timit This model is a fine-tuned version of [asapp/sew-d-small-100k](https://huggingface.co/asapp/sew-d-small-100k) on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set: - Loss: 1.7541 - Wer: 0.8061 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.2068 | 0.69 | 100 | 4.0802 | 1.0 | | 2.9805 | 1.38 | 200 | 2.9792 | 1.0 | | 2.9781 | 2.07 | 300 | 2.9408 | 1.0 | | 2.9655 | 2.76 | 400 | 2.9143 | 1.0 | | 2.8953 | 3.45 | 500 | 2.8775 | 1.0 | | 2.7718 | 4.14 | 600 | 2.7787 | 1.0 | | 2.6711 | 4.83 | 700 | 2.6401 | 0.9786 | | 2.6403 | 5.52 | 800 | 2.5435 | 1.0392 | | 2.4052 | 6.21 | 900 | 2.4580 | 1.0706 | | 2.1708 | 6.9 | 1000 | 2.2800 | 1.0090 | | 2.2555 | 7.59 | 1100 | 2.1493 | 0.9579 | | 2.3673 | 8.28 | 1200 | 2.0709 | 0.9051 | | 2.091 | 8.97 | 1300 | 2.0258 | 0.8926 | | 1.8433 | 9.66 | 1400 | 1.9645 | 0.8243 | | 1.6824 | 10.34 | 1500 | 1.9211 | 0.8707 | | 2.2282 | 11.03 | 1600 | 1.8914 | 0.8695 | | 1.9027 | 11.72 | 1700 | 1.8718 | 0.8343 | | 1.6303 | 12.41 | 1800 | 1.8646 | 0.8232 | | 1.648 | 13.1 | 1900 | 1.8297 | 0.8177 | | 2.0429 | 13.79 | 2000 | 1.8127 | 0.8642 | | 1.8833 | 14.48 | 2100 | 1.8005 | 0.8307 | | 1.5996 | 15.17 | 2200 | 1.7926 | 0.8467 | | 1.4876 | 15.86 | 2300 | 1.7795 | 0.8341 | | 1.8925 | 16.55 | 2400 | 1.7716 | 0.8199 | | 1.814 | 17.24 | 2500 | 1.7846 | 0.8086 | | 1.536 | 17.93 | 2600 | 1.7655 | 0.8019 | | 1.4476 | 18.62 | 2700 | 1.7599 | 0.8070 | | 1.7629 | 19.31 | 2800 | 1.7589 | 0.8119 | | 1.7646 | 20.0 | 2900 | 1.7541 | 0.8061 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3