--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: deberta_amazon_reviews_v1 results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: en metrics: - name: Accuracy type: accuracy value: 0.6184 --- # deberta_amazon_reviews_v1 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9076 - Accuracy: 0.6184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.9312 | 0.2 | 5000 | 0.9796 | 0.5856 | | 0.9316 | 0.4 | 10000 | 0.9336 | 0.5974 | | 0.9076 | 0.6 | 15000 | 0.9171 | 0.6026 | | 0.9024 | 0.8 | 20000 | 0.9194 | 0.6046 | | 0.8794 | 1.0 | 25000 | 0.9109 | 0.6084 | | 0.8067 | 1.2 | 30000 | 0.9339 | 0.6092 | | 0.8268 | 1.4 | 35000 | 0.9073 | 0.6162 | | 0.8205 | 1.6 | 40000 | 0.9042 | 0.6158 | | 0.795 | 1.8 | 45000 | 0.9189 | 0.6168 | | 0.7836 | 2.0 | 50000 | 0.9076 | 0.6184 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6