4bit AWQ Quantized Version of [parlance-labs/hc-mistral-alpaca-merged](https://huggingface.co/parlance-labs/hc-mistral-alpaca-merged) This is how to use [AutoAWQ](https://github.com/casper-hansen/AutoAWQ/tree/main) to quantize the model. ```python from awq import AutoAWQForCausalLM from transformers import AutoTokenizer # setup quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" } quant_path="hc-mistral-alpaca-merged-awq" model_path="parlance-labs/hc-mistral-alpaca-merged" model = AutoAWQForCausalLM.from_pretrained(model_path, **{"low_cpu_mem_usage": True}) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # quantize and save model model.quantize(tokenizer, quant_config=quant_config) model.save_quantized(quant_path) tokenizer.save_pretrained(quant_path) ``` After you save the model you can upload it to the hub ```bash cd hc-mistral-alpaca-merged-awq huggingface-cli upload parlance-labs/hc-mistral-alpaca-merged-awq . ```