Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeINF-LLaVA: Dual-perspective Perception for High-Resolution Multimodal Large Language Model
With advancements in data availability and computing resources, Multimodal Large Language Models (MLLMs) have showcased capabilities across various fields. However, the quadratic complexity of the vision encoder in MLLMs constrains the resolution of input images. Most current approaches mitigate this issue by cropping high-resolution images into smaller sub-images, which are then processed independently by the vision encoder. Despite capturing sufficient local details, these sub-images lack global context and fail to interact with one another. To address this limitation, we propose a novel MLLM, INF-LLaVA, designed for effective high-resolution image perception. INF-LLaVA incorporates two innovative components. First, we introduce a Dual-perspective Cropping Module (DCM), which ensures that each sub-image contains continuous details from a local perspective and comprehensive information from a global perspective. Second, we introduce Dual-perspective Enhancement Module (DEM) to enable the mutual enhancement of global and local features, allowing INF-LLaVA to effectively process high-resolution images by simultaneously capturing detailed local information and comprehensive global context. Extensive ablation studies validate the effectiveness of these components, and experiments on a diverse set of benchmarks demonstrate that INF-LLaVA outperforms existing MLLMs. Code and pretrained model are available at https://github.com/WeihuangLin/INF-LLaVA.
Graphusion: A RAG Framework for Knowledge Graph Construction with a Global Perspective
Knowledge Graphs (KGs) are crucial in the field of artificial intelligence and are widely used in downstream tasks, such as question-answering (QA). The construction of KGs typically requires significant effort from domain experts. Large Language Models (LLMs) have recently been used for Knowledge Graph Construction (KGC). However, most existing approaches focus on a local perspective, extracting knowledge triplets from individual sentences or documents, missing a fusion process to combine the knowledge in a global KG. This work introduces Graphusion, a zero-shot KGC framework from free text. It contains three steps: in Step 1, we extract a list of seed entities using topic modeling to guide the final KG includes the most relevant entities; in Step 2, we conduct candidate triplet extraction using LLMs; in Step 3, we design the novel fusion module that provides a global view of the extracted knowledge, incorporating entity merging, conflict resolution, and novel triplet discovery. Results show that Graphusion achieves scores of 2.92 and 2.37 out of 3 for entity extraction and relation recognition, respectively. Moreover, we showcase how Graphusion could be applied to the Natural Language Processing (NLP) domain and validate it in an educational scenario. Specifically, we introduce TutorQA, a new expert-verified benchmark for QA, comprising six tasks and a total of 1,200 QA pairs. Using the Graphusion-constructed KG, we achieve a significant improvement on the benchmark, for example, a 9.2% accuracy improvement on sub-graph completion.
GridMM: Grid Memory Map for Vision-and-Language Navigation
Vision-and-language navigation (VLN) enables the agent to navigate to a remote location following the natural language instruction in 3D environments. To represent the previously visited environment, most approaches for VLN implement memory using recurrent states, topological maps, or top-down semantic maps. In contrast to these approaches, we build the top-down egocentric and dynamically growing Grid Memory Map (i.e., GridMM) to structure the visited environment. From a global perspective, historical observations are projected into a unified grid map in a top-down view, which can better represent the spatial relations of the environment. From a local perspective, we further propose an instruction relevance aggregation method to capture fine-grained visual clues in each grid region. Extensive experiments are conducted on both the REVERIE, R2R, SOON datasets in the discrete environments, and the R2R-CE dataset in the continuous environments, showing the superiority of our proposed method.
SyCoCa: Symmetrizing Contrastive Captioners with Attentive Masking for Multimodal Alignment
Multimodal alignment between language and vision is the fundamental topic in current vision-language model research. Contrastive Captioners (CoCa), as a representative method, integrates Contrastive Language-Image Pretraining (CLIP) and Image Caption (IC) into a unified framework, resulting in impressive results. CLIP imposes a bidirectional constraints on global representation of entire images and sentences. Although IC conducts an unidirectional image-to-text generation on local representation, it lacks any constraint on local text-to-image reconstruction, which limits the ability to understand images at a fine-grained level when aligned with texts. To achieve multimodal alignment from both global and local perspectives, this paper proposes Symmetrizing Contrastive Captioners (SyCoCa), which introduces bidirectional interactions on images and texts across the global and local representation levels. Specifically, we expand a Text-Guided Masked Image Modeling (TG-MIM) head based on ITC and IC heads. The improved SyCoCa can further leverage textual cues to reconstruct contextual images and visual cues to predict textual contents. When implementing bidirectional local interactions, the local contents of images tend to be cluttered or unrelated to their textual descriptions. Thus, we employ an attentive masking strategy to select effective image patches for interaction. Extensive experiments on five vision-language tasks, including image-text retrieval, image-captioning, visual question answering, and zero-shot/finetuned image classification, validate the effectiveness of our proposed method.
Graphusion: Leveraging Large Language Models for Scientific Knowledge Graph Fusion and Construction in NLP Education
Knowledge graphs (KGs) are crucial in the field of artificial intelligence and are widely applied in downstream tasks, such as enhancing Question Answering (QA) systems. The construction of KGs typically requires significant effort from domain experts. Recently, Large Language Models (LLMs) have been used for knowledge graph construction (KGC), however, most existing approaches focus on a local perspective, extracting knowledge triplets from individual sentences or documents. In this work, we introduce Graphusion, a zero-shot KGC framework from free text. The core fusion module provides a global view of triplets, incorporating entity merging, conflict resolution, and novel triplet discovery. We showcase how Graphusion could be applied to the natural language processing (NLP) domain and validate it in the educational scenario. Specifically, we introduce TutorQA, a new expert-verified benchmark for graph reasoning and QA, comprising six tasks and a total of 1,200 QA pairs. Our evaluation demonstrates that Graphusion surpasses supervised baselines by up to 10% in accuracy on link prediction. Additionally, it achieves average scores of 2.92 and 2.37 out of 3 in human evaluations for concept entity extraction and relation recognition, respectively.
Ingredients: Blending Custom Photos with Video Diffusion Transformers
This paper presents a powerful framework to customize video creations by incorporating multiple specific identity (ID) photos, with video diffusion Transformers, referred to as Ingredients. Generally, our method consists of three primary modules: (i) a facial extractor that captures versatile and precise facial features for each human ID from both global and local perspectives; (ii) a multi-scale projector that maps face embeddings into the contextual space of image query in video diffusion transformers; (iii) an ID router that dynamically combines and allocates multiple ID embedding to the corresponding space-time regions. Leveraging a meticulously curated text-video dataset and a multi-stage training protocol, Ingredients demonstrates superior performance in turning custom photos into dynamic and personalized video content. Qualitative evaluations highlight the advantages of proposed method, positioning it as a significant advancement toward more effective generative video control tools in Transformer-based architecture, compared to existing methods. The data, code, and model weights are publicly available at: https://github.com/feizc/Ingredients.
FoPru: Focal Pruning for Efficient Large Vision-Language Models
Large Vision-Language Models (LVLMs) represent a significant advancement toward achieving superior multimodal capabilities by enabling powerful Large Language Models (LLMs) to understand visual input. Typically, LVLMs utilize visual encoders, such as CLIP, to transform images into visual tokens, which are then aligned with textual tokens through projection layers before being input into the LLM for inference. Although existing LVLMs have achieved significant success, their inference efficiency is still limited by the substantial number of visual tokens and the potential redundancy among them. To mitigate this issue, we propose Focal Pruning (FoPru), a training-free method that prunes visual tokens based on the attention-based token significance derived from the vision encoder. Specifically, we introduce two alternative pruning strategies: 1) the rank strategy, which leverages all token significance scores to retain more critical tokens in a global view; 2) the row strategy, which focuses on preserving continuous key information in images from a local perspective. Finally, the selected tokens are reordered to maintain their original positional relationships. Extensive experiments across various LVLMs and multimodal datasets demonstrate that our method can prune a large number of redundant tokens while maintaining high accuracy, leading to significant improvements in inference efficiency.
CADGL: Context-Aware Deep Graph Learning for Predicting Drug-Drug Interactions
Examining Drug-Drug Interactions (DDIs) is a pivotal element in the process of drug development. DDIs occur when one drug's properties are affected by the inclusion of other drugs. Detecting favorable DDIs has the potential to pave the way for creating and advancing innovative medications applicable in practical settings. However, existing DDI prediction models continue to face challenges related to generalization in extreme cases, robust feature extraction, and real-life application possibilities. We aim to address these challenges by leveraging the effectiveness of context-aware deep graph learning by introducing a novel framework named CADGL. Based on a customized variational graph autoencoder (VGAE), we capture critical structural and physio-chemical information using two context preprocessors for feature extraction from two different perspectives: local neighborhood and molecular context, in a heterogeneous graphical structure. Our customized VGAE consists of a graph encoder, a latent information encoder, and an MLP decoder. CADGL surpasses other state-of-the-art DDI prediction models, excelling in predicting clinically valuable novel DDIs, supported by rigorous case studies.
Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection
Industrial anomaly detection is generally addressed as an unsupervised task that aims at locating defects with only normal training samples. Recently, numerous 2D anomaly detection methods have been proposed and have achieved promising results, however, using only the 2D RGB data as input is not sufficient to identify imperceptible geometric surface anomalies. Hence, in this work, we focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets, i.e., ImageNet, to construct feature databases. And we empirically find that directly using these pre-trained models is not optimal, it can either fail to detect subtle defects or mistake abnormal features as normal ones. This may be attributed to the domain gap between target industrial data and source data.Towards this problem, we propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.Both intra-modal adaptation and cross-modal alignment are optimized from a local-to-global perspective in LSFA to ensure the representation quality and consistency in the inference stage.Extensive experiments demonstrate that our method not only brings a significant performance boost to feature embedding based approaches, but also outperforms previous State-of-The-Art (SoTA) methods prominently on both MVTec-3D AD and Eyecandies datasets, e.g., LSFA achieves 97.1% I-AUROC on MVTec-3D, surpass previous SoTA by +3.4%.
From non-ergodic eigenvectors to local resolvent statistics and back: a random matrix perspective
We study the statistics of the local resolvent and non-ergodic properties of eigenvectors for a generalised Rosenzweig-Porter Ntimes N random matrix model, undergoing two transitions separated by a delocalised non-ergodic phase. Interpreting the model as the combination of on-site random energies {a_i} and a structurally disordered hopping, we found that each eigenstate is delocalised over N^{2-gamma} sites close in energy |a_j-a_i|leq N^{1-gamma} in agreement with Kravtsov et al, arXiv:1508.01714. Our other main result, obtained combining a recurrence relation for the resolvent matrix with insights from Dyson's Brownian motion, is to show that the properties of the non-ergodic delocalised phase can be probed studying the statistics of the local resolvent in a non-standard scaling limit.
Local Graph Clustering with Noisy Labels
The growing interest in machine learning problems over graphs with additional node information such as texts, images, or labels has popularized methods that require the costly operation of processing the entire graph. Yet, little effort has been made to the development of fast local methods (i.e. without accessing the entire graph) that extract useful information from such data. To that end, we propose a study of local graph clustering using noisy node labels as a proxy for additional node information. In this setting, nodes receive initial binary labels based on cluster affiliation: 1 if they belong to the target cluster and 0 otherwise. Subsequently, a fraction of these labels is flipped. We investigate the benefits of incorporating noisy labels for local graph clustering. By constructing a weighted graph with such labels, we study the performance of graph diffusion-based local clustering method on both the original and the weighted graphs. From a theoretical perspective, we consider recovering an unknown target cluster with a single seed node in a random graph with independent noisy node labels. We provide sufficient conditions on the label noise under which, with high probability, using diffusion in the weighted graph yields a more accurate recovery of the target cluster. This approach proves more effective than using the given labels alone or using diffusion in the label-free original graph. Empirically, we show that reliable node labels can be obtained with just a few samples from an attributed graph. Moreover, utilizing these labels via diffusion in the weighted graph leads to significantly better local clustering performance across several real-world datasets, improving F1 scores by up to 13%.
Demystifying Local and Global Fairness Trade-offs in Federated Learning Using Partial Information Decomposition
This work presents an information-theoretic perspective to group fairness trade-offs in federated learning (FL) with respect to sensitive attributes, such as gender, race, etc. Existing works often focus on either global fairness (overall disparity of the model across all clients) or local fairness (disparity of the model at each client), without always considering their trade-offs. There is a lack of understanding regarding the interplay between global and local fairness in FL, particularly under data heterogeneity, and if and when one implies the other. To address this gap, we leverage a body of work in information theory called partial information decomposition (PID), which first identifies three sources of unfairness in FL, namely, Unique Disparity, Redundant Disparity, and Masked Disparity. We demonstrate how these three disparities contribute to global and local fairness using canonical examples. This decomposition helps us derive fundamental limits on the trade-off between global and local fairness, highlighting where they agree or disagree. We introduce the Accuracy and Global-Local Fairness Optimality Problem (AGLFOP), a convex optimization that defines the theoretical limits of accuracy and fairness trade-offs, identifying the best possible performance any FL strategy can attain given a dataset and client distribution. We also present experimental results on synthetic datasets and the ADULT dataset to support our theoretical findings.
Local Relation Learning for Face Forgery Detection
With the rapid development of facial manipulation techniques, face forgery detection has received considerable attention in digital media forensics due to security concerns. Most existing methods formulate face forgery detection as a classification problem and utilize binary labels or manipulated region masks as supervision. However, without considering the correlation between local regions, these global supervisions are insufficient to learn a generalized feature and prone to overfitting. To address this issue, we propose a novel perspective of face forgery detection via local relation learning. Specifically, we propose a Multi-scale Patch Similarity Module (MPSM), which measures the similarity between features of local regions and forms a robust and generalized similarity pattern. Moreover, we propose an RGB-Frequency Attention Module (RFAM) to fuse information in both RGB and frequency domains for more comprehensive local feature representation, which further improves the reliability of the similarity pattern. Extensive experiments show that the proposed method consistently outperforms the state-of-the-arts on widely-used benchmarks. Furthermore, detailed visualization shows the robustness and interpretability of our method.
Momentum Auxiliary Network for Supervised Local Learning
Deep neural networks conventionally employ end-to-end backpropagation for their training process, which lacks biological credibility and triggers a locking dilemma during network parameter updates, leading to significant GPU memory use. Supervised local learning, which segments the network into multiple local blocks updated by independent auxiliary networks. However, these methods cannot replace end-to-end training due to lower accuracy, as gradients only propagate within their local block, creating a lack of information exchange between blocks. To address this issue and establish information transfer across blocks, we propose a Momentum Auxiliary Network (MAN) that establishes a dynamic interaction mechanism. The MAN leverages an exponential moving average (EMA) of the parameters from adjacent local blocks to enhance information flow. This auxiliary network, updated through EMA, helps bridge the informational gap between blocks. Nevertheless, we observe that directly applying EMA parameters has certain limitations due to feature discrepancies among local blocks. To overcome this, we introduce learnable biases, further boosting performance. We have validated our method on four image classification datasets (CIFAR-10, STL-10, SVHN, ImageNet), attaining superior performance and substantial memory savings. Notably, our method can reduce GPU memory usage by more than 45\% on the ImageNet dataset compared to end-to-end training, while achieving higher performance. The Momentum Auxiliary Network thus offers a new perspective for supervised local learning. Our code is available at: https://github.com/JunhaoSu0/MAN.
Revisiting Link Prediction: A Data Perspective
Link prediction, a fundamental task on graphs, has proven indispensable in various applications, e.g., friend recommendation, protein analysis, and drug interaction prediction. However, since datasets span a multitude of domains, they could have distinct underlying mechanisms of link formation. Evidence in existing literature underscores the absence of a universally best algorithm suitable for all datasets. In this paper, we endeavor to explore principles of link prediction across diverse datasets from a data-centric perspective. We recognize three fundamental factors critical to link prediction: local structural proximity, global structural proximity, and feature proximity. We then unearth relationships among those factors where (i) global structural proximity only shows effectiveness when local structural proximity is deficient. (ii) The incompatibility can be found between feature and structural proximity. Such incompatibility leads to GNNs for Link Prediction (GNN4LP) consistently underperforming on edges where the feature proximity factor dominates. Inspired by these new insights from a data perspective, we offer practical instruction for GNN4LP model design and guidelines for selecting appropriate benchmark datasets for more comprehensive evaluations.
Domain Adversarial Training: A Game Perspective
The dominant line of work in domain adaptation has focused on learning invariant representations using domain-adversarial training. In this paper, we interpret this approach from a game theoretical perspective. Defining optimal solutions in domain-adversarial training as a local Nash equilibrium, we show that gradient descent in domain-adversarial training can violate the asymptotic convergence guarantees of the optimizer, oftentimes hindering the transfer performance. Our analysis leads us to replace gradient descent with high-order ODE solvers (i.e., Runge-Kutta), for which we derive asymptotic convergence guarantees. This family of optimizers is significantly more stable and allows more aggressive learning rates, leading to high performance gains when used as a drop-in replacement over standard optimizers. Our experiments show that in conjunction with state-of-the-art domain-adversarial methods, we achieve up to 3.5% improvement with less than of half training iterations. Our optimizers are easy to implement, free of additional parameters, and can be plugged into any domain-adversarial framework.
TransFace: Calibrating Transformer Training for Face Recognition from a Data-Centric Perspective
Vision Transformers (ViTs) have demonstrated powerful representation ability in various visual tasks thanks to their intrinsic data-hungry nature. However, we unexpectedly find that ViTs perform vulnerably when applied to face recognition (FR) scenarios with extremely large datasets. We investigate the reasons for this phenomenon and discover that the existing data augmentation approach and hard sample mining strategy are incompatible with ViTs-based FR backbone due to the lack of tailored consideration on preserving face structural information and leveraging each local token information. To remedy these problems, this paper proposes a superior FR model called TransFace, which employs a patch-level data augmentation strategy named DPAP and a hard sample mining strategy named EHSM. Specially, DPAP randomly perturbs the amplitude information of dominant patches to expand sample diversity, which effectively alleviates the overfitting problem in ViTs. EHSM utilizes the information entropy in the local tokens to dynamically adjust the importance weight of easy and hard samples during training, leading to a more stable prediction. Experiments on several benchmarks demonstrate the superiority of our TransFace. Code and models are available at https://github.com/DanJun6737/TransFace.
MoTIF: Learning Motion Trajectories with Local Implicit Neural Functions for Continuous Space-Time Video Super-Resolution
This work addresses continuous space-time video super-resolution (C-STVSR) that aims to up-scale an input video both spatially and temporally by any scaling factors. One key challenge of C-STVSR is to propagate information temporally among the input video frames. To this end, we introduce a space-time local implicit neural function. It has the striking feature of learning forward motion for a continuum of pixels. We motivate the use of forward motion from the perspective of learning individual motion trajectories, as opposed to learning a mixture of motion trajectories with backward motion. To ease motion interpolation, we encode sparsely sampled forward motion extracted from the input video as the contextual input. Along with a reliability-aware splatting and decoding scheme, our framework, termed MoTIF, achieves the state-of-the-art performance on C-STVSR. The source code of MoTIF is available at https://github.com/sichun233746/MoTIF.
ProKeR: A Kernel Perspective on Few-Shot Adaptation of Large Vision-Language Models
The growing popularity of Contrastive Language-Image Pretraining (CLIP) has led to its widespread application in various visual downstream tasks. To enhance CLIP's effectiveness and versatility, efficient few-shot adaptation techniques have been widely adopted. Among these approaches, training-free methods, particularly caching methods exemplified by Tip-Adapter, have gained attention for their lightweight adaptation without the need for additional fine-tuning. In this paper, we revisit Tip-Adapter from a kernel perspective, showing that caching methods function as local adapters and are connected to a well-established kernel literature. Drawing on this insight, we offer a theoretical understanding of how these methods operate and suggest multiple avenues for enhancing the Tip-Adapter baseline. Notably, our analysis shows the importance of incorporating global information in local adapters. Therefore, we subsequently propose a global method that learns a proximal regularizer in a reproducing kernel Hilbert space (RKHS) using CLIP as a base learner. Our method, which we call ProKeR (Proximal Kernel ridge Regression), has a closed form solution and achieves state-of-the-art performances across 11 datasets in the standard few-shot adaptation benchmark.
Revisiting the Parameter Efficiency of Adapters from the Perspective of Precision Redundancy
Current state-of-the-art results in computer vision depend in part on fine-tuning large pre-trained vision models. However, with the exponential growth of model sizes, the conventional full fine-tuning, which needs to store a individual network copy for each tasks, leads to increasingly huge storage and transmission overhead. Adapter-based Parameter-Efficient Tuning (PET) methods address this challenge by tuning lightweight adapters inserted into the frozen pre-trained models. In this paper, we investigate how to make adapters even more efficient, reaching a new minimum size required to store a task-specific fine-tuned network. Inspired by the observation that the parameters of adapters converge at flat local minima, we find that adapters are resistant to noise in parameter space, which means they are also resistant to low numerical precision. To train low-precision adapters, we propose a computational-efficient quantization method which minimizes the quantization error. Through extensive experiments, we find that low-precision adapters exhibit minimal performance degradation, and even 1-bit precision is sufficient for adapters. The experimental results demonstrate that 1-bit adapters outperform all other PET methods on both the VTAB-1K benchmark and few-shot FGVC tasks, while requiring the smallest storage size. Our findings show, for the first time, the significant potential of quantization techniques in PET, providing a general solution to enhance the parameter efficiency of adapter-based PET methods. Code: https://github.com/JieShibo/PETL-ViT
A Topological Perspective on Demystifying GNN-Based Link Prediction Performance
Graph Neural Networks (GNNs) have shown great promise in learning node embeddings for link prediction (LP). While numerous studies aim to improve the overall LP performance of GNNs, none have explored its varying performance across different nodes and its underlying reasons. To this end, we aim to demystify which nodes will perform better from the perspective of their local topology. Despite the widespread belief that low-degree nodes exhibit poorer LP performance, our empirical findings provide nuances to this viewpoint and prompt us to propose a better metric, Topological Concentration (TC), based on the intersection of the local subgraph of each node with the ones of its neighbors. We empirically demonstrate that TC has a higher correlation with LP performance than other node-level topological metrics like degree and subgraph density, offering a better way to identify low-performing nodes than using cold-start. With TC, we discover a novel topological distribution shift issue in which newly joined neighbors of a node tend to become less interactive with that node's existing neighbors, compromising the generalizability of node embeddings for LP at testing time. To make the computation of TC scalable, We further propose Approximated Topological Concentration (ATC) and theoretically/empirically justify its efficacy in approximating TC and reducing the computation complexity. Given the positive correlation between node TC and its LP performance, we explore the potential of boosting LP performance via enhancing TC by re-weighting edges in the message-passing and discuss its effectiveness with limitations. Our code is publicly available at https://github.com/YuWVandy/Topo_LP_GNN.
Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post Hoc Explanations
A critical problem in the field of post hoc explainability is the lack of a common foundational goal among methods. For example, some methods are motivated by function approximation, some by game theoretic notions, and some by obtaining clean visualizations. This fragmentation of goals causes not only an inconsistent conceptual understanding of explanations but also the practical challenge of not knowing which method to use when. In this work, we begin to address these challenges by unifying eight popular post hoc explanation methods (LIME, C-LIME, KernelSHAP, Occlusion, Vanilla Gradients, Gradients x Input, SmoothGrad, and Integrated Gradients). We show that these methods all perform local function approximation of the black-box model, differing only in the neighbourhood and loss function used to perform the approximation. This unification enables us to (1) state a no free lunch theorem for explanation methods, demonstrating that no method can perform optimally across all neighbourhoods, and (2) provide a guiding principle to choose among methods based on faithfulness to the black-box model. We empirically validate these theoretical results using various real-world datasets, model classes, and prediction tasks. By bringing diverse explanation methods into a common framework, this work (1) advances the conceptual understanding of these methods, revealing their shared local function approximation objective, properties, and relation to one another, and (2) guides the use of these methods in practice, providing a principled approach to choose among methods and paving the way for the creation of new ones.
EMS: Adaptive Evict-then-Merge Strategy for Head-wise KV Cache Compression Based on Global-Local Importance
As large language models (LLMs) continue to advance, the demand for higher quality and faster processing of long contexts across various applications is growing. KV cache is widely adopted as it stores previously generated key and value tokens, effectively reducing redundant computations during inference. However, as memory overhead becomes a significant concern, efficient compression of KV cache has gained increasing attention. Most existing methods perform compression from two perspectives: identifying important tokens and designing compression strategies. However, these approaches often produce biased distributions of important tokens due to the influence of accumulated attention scores or positional encoding. Furthermore, they overlook the sparsity and redundancy across different heads, which leads to difficulties in preserving the most effective information at the head level. To this end, we propose EMS to overcome these limitations, while achieving better KV cache compression under extreme compression ratios. Specifically, we introduce a Global-Local score that combines accumulated attention scores from both global and local KV tokens to better identify the token importance. For the compression strategy, we design an adaptive and unified Evict-then-Merge framework that accounts for the sparsity and redundancy of KV tokens across different heads. Additionally, we implement the head-wise parallel compression through a zero-class mechanism to enhance efficiency. Extensive experiments demonstrate our SOTA performance even under extreme compression ratios. EMS consistently achieves the lowest perplexity, improves scores by over 1.28 points across four LLMs on LongBench under a 256 cache budget, and preserves 95% retrieval accuracy with a cache budget less than 2% of the context length in the Needle-in-a-Haystack task.
Effective Structural Encodings via Local Curvature Profiles
Structural and Positional Encodings can significantly improve the performance of Graph Neural Networks in downstream tasks. Recent literature has begun to systematically investigate differences in the structural properties that these approaches encode, as well as performance trade-offs between them. However, the question of which structural properties yield the most effective encoding remains open. In this paper, we investigate this question from a geometric perspective. We propose a novel structural encoding based on discrete Ricci curvature (Local Curvature Profiles, short LCP) and show that it significantly outperforms existing encoding approaches. We further show that combining local structural encodings, such as LCP, with global positional encodings improves downstream performance, suggesting that they capture complementary geometric information. Finally, we compare different encoding types with (curvature-based) rewiring techniques. Rewiring has recently received a surge of interest due to its ability to improve the performance of Graph Neural Networks by mitigating over-smoothing and over-squashing effects. Our results suggest that utilizing curvature information for structural encodings delivers significantly larger performance increases than rewiring.
DualFocus: Integrating Macro and Micro Perspectives in Multi-modal Large Language Models
We present DualFocus, a novel framework for integrating macro and micro perspectives within multi-modal large language models (MLLMs) to enhance vision-language task performance. Current MLLMs typically singularly focus on inputs at a predefined resolution, resulting in deficiencies in detailed questions involving local regions. We introduced a DualFocus mechanism where the model concentrates on the image from a macro perspective, responses to the question, and identifies suitable sub-regions to zoom in for subsequent micro perspective analysis. Via the integration of answers from both macro and micro perspectives, the model is adept at addressing tasks that encompass global, detailed, and combined considerations. To endows the DualFocus mechanism in MLLMs, we curated a tailored dataset derived from the Visual Genome (VG) and adapted it to align with the training regimen of DualFocus. Through comparative studies across different model sizes and benchmarks, we demonstrate DualFocus's superiority in balancing detailed examination with holistic insight, significantly reducing hallucination instances in MLLMs and improving their performance in various vision-language tasks.
Imagine360: Immersive 360 Video Generation from Perspective Anchor
360^circ videos offer a hyper-immersive experience that allows the viewers to explore a dynamic scene from full 360 degrees. To achieve more user-friendly and personalized content creation in 360^circ video format, we seek to lift standard perspective videos into 360^circ equirectangular videos. To this end, we introduce Imagine360, the first perspective-to-360^circ video generation framework that creates high-quality 360^circ videos with rich and diverse motion patterns from video anchors. Imagine360 learns fine-grained spherical visual and motion patterns from limited 360^circ video data with several key designs. 1) Firstly we adopt the dual-branch design, including a perspective and a panorama video denoising branch to provide local and global constraints for 360^circ video generation, with motion module and spatial LoRA layers fine-tuned on extended web 360^circ videos. 2) Additionally, an antipodal mask is devised to capture long-range motion dependencies, enhancing the reversed camera motion between antipodal pixels across hemispheres. 3) To handle diverse perspective video inputs, we propose elevation-aware designs that adapt to varying video masking due to changing elevations across frames. Extensive experiments show Imagine360 achieves superior graphics quality and motion coherence among state-of-the-art 360^circ video generation methods. We believe Imagine360 holds promise for advancing personalized, immersive 360^circ video creation.
AttT2M: Text-Driven Human Motion Generation with Multi-Perspective Attention Mechanism
Generating 3D human motion based on textual descriptions has been a research focus in recent years. It requires the generated motion to be diverse, natural, and conform to the textual description. Due to the complex spatio-temporal nature of human motion and the difficulty in learning the cross-modal relationship between text and motion, text-driven motion generation is still a challenging problem. To address these issues, we propose AttT2M, a two-stage method with multi-perspective attention mechanism: body-part attention and global-local motion-text attention. The former focuses on the motion embedding perspective, which means introducing a body-part spatio-temporal encoder into VQ-VAE to learn a more expressive discrete latent space. The latter is from the cross-modal perspective, which is used to learn the sentence-level and word-level motion-text cross-modal relationship. The text-driven motion is finally generated with a generative transformer. Extensive experiments conducted on HumanML3D and KIT-ML demonstrate that our method outperforms the current state-of-the-art works in terms of qualitative and quantitative evaluation, and achieve fine-grained synthesis and action2motion. Our code is in https://github.com/ZcyMonkey/AttT2M
Revealing Key Details to See Differences: A Novel Prototypical Perspective for Skeleton-based Action Recognition
In skeleton-based action recognition, a key challenge is distinguishing between actions with similar trajectories of joints due to the lack of image-level details in skeletal representations. Recognizing that the differentiation of similar actions relies on subtle motion details in specific body parts, we direct our approach to focus on the fine-grained motion of local skeleton components. To this end, we introduce ProtoGCN, a Graph Convolutional Network (GCN)-based model that breaks down the dynamics of entire skeleton sequences into a combination of learnable prototypes representing core motion patterns of action units. By contrasting the reconstruction of prototypes, ProtoGCN can effectively identify and enhance the discriminative representation of similar actions. Without bells and whistles, ProtoGCN achieves state-of-the-art performance on multiple benchmark datasets, including NTU RGB+D, NTU RGB+D 120, Kinetics-Skeleton, and FineGYM, which demonstrates the effectiveness of the proposed method. The code is available at https://github.com/firework8/ProtoGCN.
Scene Coordinate Reconstruction: Posing of Image Collections via Incremental Learning of a Relocalizer
We address the task of estimating camera parameters from a set of images depicting a scene. Popular feature-based structure-from-motion (SfM) tools solve this task by incremental reconstruction: they repeat triangulation of sparse 3D points and registration of more camera views to the sparse point cloud. We re-interpret incremental structure-from-motion as an iterated application and refinement of a visual relocalizer, that is, of a method that registers new views to the current state of the reconstruction. This perspective allows us to investigate alternative visual relocalizers that are not rooted in local feature matching. We show that scene coordinate regression, a learning-based relocalization approach, allows us to build implicit, neural scene representations from unposed images. Different from other learning-based reconstruction methods, we do not require pose priors nor sequential inputs, and we optimize efficiently over thousands of images. Our method, ACE0 (ACE Zero), estimates camera poses to an accuracy comparable to feature-based SfM, as demonstrated by novel view synthesis. Project page: https://nianticlabs.github.io/acezero/
Graph-Aware Isomorphic Attention for Adaptive Dynamics in Transformers
We present an approach to modifying Transformer architectures by integrating graph-aware relational reasoning into the attention mechanism, merging concepts from graph neural networks and language modeling. Building on the inherent connection between attention and graph theory, we reformulate the Transformer's attention mechanism as a graph operation and propose Graph-Aware Isomorphic Attention. This method leverages advanced graph modeling strategies, including Graph Isomorphism Networks (GIN) and Principal Neighborhood Aggregation (PNA), to enrich the representation of relational structures. Our approach captures complex dependencies and generalizes across tasks, as evidenced by a reduced generalization gap and improved learning performance. Additionally, we expand the concept of graph-aware attention to introduce Sparse GIN-Attention, a fine-tuning approach that employs sparse GINs. By interpreting attention matrices as sparse adjacency graphs, this technique enhances the adaptability of pre-trained foundational models with minimal computational overhead, endowing them with graph-aware capabilities. Sparse GIN-Attention fine-tuning achieves improved training dynamics and better generalization compared to alternative methods like low-rank adaption (LoRA). We discuss latent graph-like structures within traditional attention mechanisms, offering a new lens through which Transformers can be understood. By evolving Transformers as hierarchical GIN models for relational reasoning. This perspective suggests profound implications for foundational model development, enabling the design of architectures that dynamically adapt to both local and global dependencies. Applications in bioinformatics, materials science, language modeling, and beyond could benefit from this synthesis of relational and sequential data modeling, setting the stage for interpretable and generalizable modeling strategies.
Toward Moiré-Free and Detail-Preserving Demosaicking
3D convolutions are commonly employed by demosaicking neural models, in the same way as solving other image restoration problems. Counter-intuitively, we show that 3D convolutions implicitly impede the RGB color spectra from exchanging complementary information, resulting in spectral-inconsistent inference of the local spatial high frequency components. As a consequence, shallow 3D convolution networks suffer the Moir\'e artifacts, but deep 3D convolutions cause over-smoothness. We analyze the fundamental difference between demosaicking and other problems that predict lost pixels between available ones (e.g., super-resolution reconstruction), and present the underlying reasons for the confliction between Moir\'e-free and detail-preserving. From the new perspective, our work decouples the common standard convolution procedure to spectral and spatial feature aggregations, which allow strengthening global communication in the spectral dimension while respecting local contrast in the spatial dimension. We apply our demosaicking model to two tasks: Joint Demosaicking-Denoising and Independently Demosaicking. In both applications, our model substantially alleviates artifacts such as Moir\'e and over-smoothness at similar or lower computational cost to currently top-performing models, as validated by diverse evaluations. Source code will be released along with paper publication.
Generative Image Inpainting with Submanifold Alignment
Image inpainting aims at restoring missing regions of corrupted images, which has many applications such as image restoration and object removal. However, current GAN-based generative inpainting models do not explicitly exploit the structural or textural consistency between restored contents and their surrounding contexts.To address this limitation, we propose to enforce the alignment (or closeness) between the local data submanifolds (or subspaces) around restored images and those around the original (uncorrupted) images during the learning process of GAN-based inpainting models. We exploit Local Intrinsic Dimensionality (LID) to measure, in deep feature space, the alignment between data submanifolds learned by a GAN model and those of the original data, from a perspective of both images (denoted as iLID) and local patches (denoted as pLID) of images. We then apply iLID and pLID as regularizations for GAN-based inpainting models to encourage two levels of submanifold alignment: 1) an image-level alignment for improving structural consistency, and 2) a patch-level alignment for improving textural details. Experimental results on four benchmark datasets show that our proposed model can generate more accurate results than state-of-the-art models.
LocalMamba: Visual State Space Model with Windowed Selective Scan
Recent advancements in state space models, notably Mamba, have demonstrated significant progress in modeling long sequences for tasks like language understanding. Yet, their application in vision tasks has not markedly surpassed the performance of traditional Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). This paper posits that the key to enhancing Vision Mamba (ViM) lies in optimizing scan directions for sequence modeling. Traditional ViM approaches, which flatten spatial tokens, overlook the preservation of local 2D dependencies, thereby elongating the distance between adjacent tokens. We introduce a novel local scanning strategy that divides images into distinct windows, effectively capturing local dependencies while maintaining a global perspective. Additionally, acknowledging the varying preferences for scan patterns across different network layers, we propose a dynamic method to independently search for the optimal scan choices for each layer, substantially improving performance. Extensive experiments across both plain and hierarchical models underscore our approach's superiority in effectively capturing image representations. For example, our model significantly outperforms Vim-Ti by 3.1% on ImageNet with the same 1.5G FLOPs. Code is available at: https://github.com/hunto/LocalMamba.
Identity-Preserving Text-to-Video Generation by Frequency Decomposition
Identity-preserving text-to-video (IPT2V) generation aims to create high-fidelity videos with consistent human identity. It is an important task in video generation but remains an open problem for generative models. This paper pushes the technical frontier of IPT2V in two directions that have not been resolved in literature: (1) A tuning-free pipeline without tedious case-by-case finetuning, and (2) A frequency-aware heuristic identity-preserving DiT-based control scheme. We propose ConsisID, a tuning-free DiT-based controllable IPT2V model to keep human identity consistent in the generated video. Inspired by prior findings in frequency analysis of diffusion transformers, it employs identity-control signals in the frequency domain, where facial features can be decomposed into low-frequency global features and high-frequency intrinsic features. First, from a low-frequency perspective, we introduce a global facial extractor, which encodes reference images and facial key points into a latent space, generating features enriched with low-frequency information. These features are then integrated into shallow layers of the network to alleviate training challenges associated with DiT. Second, from a high-frequency perspective, we design a local facial extractor to capture high-frequency details and inject them into transformer blocks, enhancing the model's ability to preserve fine-grained features. We propose a hierarchical training strategy to leverage frequency information for identity preservation, transforming a vanilla pre-trained video generation model into an IPT2V model. Extensive experiments demonstrate that our frequency-aware heuristic scheme provides an optimal control solution for DiT-based models. Thanks to this scheme, our ConsisID generates high-quality, identity-preserving videos, making strides towards more effective IPT2V.
SauvolaNet: Learning Adaptive Sauvola Network for Degraded Document Binarization
Inspired by the classic Sauvola local image thresholding approach, we systematically study it from the deep neural network (DNN) perspective and propose a new solution called SauvolaNet for degraded document binarization (DDB). It is composed of three explainable modules, namely, Multi-Window Sauvola (MWS), Pixelwise Window Attention (PWA), and Adaptive Sauolva Threshold (AST). The MWS module honestly reflects the classic Sauvola but with trainable parameters and multi-window settings. The PWA module estimates the preferred window sizes for each pixel location. The AST module further consolidates the outputs from MWS and PWA and predicts the final adaptive threshold for each pixel location. As a result, SauvolaNet becomes end-to-end trainable and significantly reduces the number of required network parameters to 40K -- it is only 1\% of MobileNetV2. In the meantime, it achieves the State-of-The-Art (SoTA) performance for the DDB task -- SauvolaNet is at least comparable to, if not better than, SoTA binarization solutions in our extensive studies on the 13 public document binarization datasets. Our source code is available at https://github.com/Leedeng/SauvolaNet.
GPFL: Simultaneously Learning Global and Personalized Feature Information for Personalized Federated Learning
Federated Learning (FL) is popular for its privacy-preserving and collaborative learning capabilities. Recently, personalized FL (pFL) has received attention for its ability to address statistical heterogeneity and achieve personalization in FL. However, from the perspective of feature extraction, most existing pFL methods only focus on extracting global or personalized feature information during local training, which fails to meet the collaborative learning and personalization goals of pFL. To address this, we propose a new pFL method, named GPFL, to simultaneously learn global and personalized feature information on each client. We conduct extensive experiments on six datasets in three statistically heterogeneous settings and show the superiority of GPFL over ten state-of-the-art methods regarding effectiveness, scalability, fairness, stability, and privacy. Besides, GPFL mitigates overfitting and outperforms the baselines by up to 8.99% in accuracy.
Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution
Although numerous solutions have been proposed for image super-resolution, they are usually incompatible with low-power devices with many computational and memory constraints. In this paper, we address this problem by proposing a simple yet effective deep network to solve image super-resolution efficiently. In detail, we develop a spatially-adaptive feature modulation (SAFM) mechanism upon a vision transformer (ViT)-like block. Within it, we first apply the SAFM block over input features to dynamically select representative feature representations. As the SAFM block processes the input features from a long-range perspective, we further introduce a convolutional channel mixer (CCM) to simultaneously extract local contextual information and perform channel mixing. Extensive experimental results show that the proposed method is 3times smaller than state-of-the-art efficient SR methods, e.g., IMDN, in terms of the network parameters and requires less computational cost while achieving comparable performance. The code is available at https://github.com/sunny2109/SAFMN.
Bridging the Divide: Reconsidering Softmax and Linear Attention
Widely adopted in modern Vision Transformer designs, Softmax attention can effectively capture long-range visual information; however, it incurs excessive computational cost when dealing with high-resolution inputs. In contrast, linear attention naturally enjoys linear complexity and has great potential to scale up to higher-resolution images. Nonetheless, the unsatisfactory performance of linear attention greatly limits its practical application in various scenarios. In this paper, we take a step forward to close the gap between the linear and Softmax attention with novel theoretical analyses, which demystify the core factors behind the performance deviations. Specifically, we present two key perspectives to understand and alleviate the limitations of linear attention: the injective property and the local modeling ability. Firstly, we prove that linear attention is not injective, which is prone to assign identical attention weights to different query vectors, thus adding to severe semantic confusion since different queries correspond to the same outputs. Secondly, we confirm that effective local modeling is essential for the success of Softmax attention, in which linear attention falls short. The aforementioned two fundamental differences significantly contribute to the disparities between these two attention paradigms, which is demonstrated by our substantial empirical validation in the paper. In addition, more experiment results indicate that linear attention, as long as endowed with these two properties, can outperform Softmax attention across various tasks while maintaining lower computation complexity. Code is available at https://github.com/LeapLabTHU/InLine.
FedImpro: Measuring and Improving Client Update in Federated Learning
Federated Learning (FL) models often experience client drift caused by heterogeneous data, where the distribution of data differs across clients. To address this issue, advanced research primarily focuses on manipulating the existing gradients to achieve more consistent client models. In this paper, we present an alternative perspective on client drift and aim to mitigate it by generating improved local models. First, we analyze the generalization contribution of local training and conclude that this generalization contribution is bounded by the conditional Wasserstein distance between the data distribution of different clients. Then, we propose FedImpro, to construct similar conditional distributions for local training. Specifically, FedImpro decouples the model into high-level and low-level components, and trains the high-level portion on reconstructed feature distributions. This approach enhances the generalization contribution and reduces the dissimilarity of gradients in FL. Experimental results show that FedImpro can help FL defend against data heterogeneity and enhance the generalization performance of the model.
Unsupervised Learning of Landmarks by Descriptor Vector Exchange
Equivariance to random image transformations is an effective method to learn landmarks of object categories, such as the eyes and the nose in faces, without manual supervision. However, this method does not explicitly guarantee that the learned landmarks are consistent with changes between different instances of the same object, such as different facial identities. In this paper, we develop a new perspective on the equivariance approach by noting that dense landmark detectors can be interpreted as local image descriptors equipped with invariance to intra-category variations. We then propose a direct method to enforce such an invariance in the standard equivariant loss. We do so by exchanging descriptor vectors between images of different object instances prior to matching them geometrically. In this manner, the same vectors must work regardless of the specific object identity considered. We use this approach to learn vectors that can simultaneously be interpreted as local descriptors and dense landmarks, combining the advantages of both. Experiments on standard benchmarks show that this approach can match, and in some cases surpass state-of-the-art performance amongst existing methods that learn landmarks without supervision. Code is available at www.robots.ox.ac.uk/~vgg/research/DVE/.
ZJUKLAB at SemEval-2025 Task 4: Unlearning via Model Merging
This paper presents the ZJUKLAB team's submission for SemEval-2025 Task 4: Unlearning Sensitive Content from Large Language Models. This task aims to selectively erase sensitive knowledge from large language models, avoiding both over-forgetting and under-forgetting issues. We propose an unlearning system that leverages Model Merging (specifically TIES-Merging), combining two specialized models into a more balanced unlearned model. Our system achieves competitive results, ranking second among 26 teams, with an online score of 0.944 for Task Aggregate and 0.487 for overall Aggregate. In this paper, we also conduct local experiments and perform a comprehensive analysis of the unlearning process, examining performance trajectories, loss dynamics, and weight perspectives, along with several supplementary experiments, to understand the effectiveness of our method. Furthermore, we analyze the shortcomings of our method and evaluation metrics, emphasizing that MIA scores and ROUGE-based metrics alone are insufficient to fully evaluate successful unlearning. Finally, we emphasize the need for more comprehensive evaluation methodologies and rethinking of unlearning objectives in future research. Code is available at https://github.com/zjunlp/unlearn/tree/main/semeval25.
Enhancing Generalization of Universal Adversarial Perturbation through Gradient Aggregation
Deep neural networks are vulnerable to universal adversarial perturbation (UAP), an instance-agnostic perturbation capable of fooling the target model for most samples. Compared to instance-specific adversarial examples, UAP is more challenging as it needs to generalize across various samples and models. In this paper, we examine the serious dilemma of UAP generation methods from a generalization perspective -- the gradient vanishing problem using small-batch stochastic gradient optimization and the local optima problem using large-batch optimization. To address these problems, we propose a simple and effective method called Stochastic Gradient Aggregation (SGA), which alleviates the gradient vanishing and escapes from poor local optima at the same time. Specifically, SGA employs the small-batch training to perform multiple iterations of inner pre-search. Then, all the inner gradients are aggregated as a one-step gradient estimation to enhance the gradient stability and reduce quantization errors. Extensive experiments on the standard ImageNet dataset demonstrate that our method significantly enhances the generalization ability of UAP and outperforms other state-of-the-art methods. The code is available at https://github.com/liuxuannan/Stochastic-Gradient-Aggregation.
ConvBERT: Improving BERT with Span-based Dynamic Convolution
Pre-trained language models like BERT and its variants have recently achieved impressive performance in various natural language understanding tasks. However, BERT heavily relies on the global self-attention block and thus suffers large memory footprint and computation cost. Although all its attention heads query on the whole input sequence for generating the attention map from a global perspective, we observe some heads only need to learn local dependencies, which means the existence of computation redundancy. We therefore propose a novel span-based dynamic convolution to replace these self-attention heads to directly model local dependencies. The novel convolution heads, together with the rest self-attention heads, form a new mixed attention block that is more efficient at both global and local context learning. We equip BERT with this mixed attention design and build a ConvBERT model. Experiments have shown that ConvBERT significantly outperforms BERT and its variants in various downstream tasks, with lower training cost and fewer model parameters. Remarkably, ConvBERTbase model achieves 86.4 GLUE score, 0.7 higher than ELECTRAbase, while using less than 1/4 training cost. Code and pre-trained models will be released.
RaVL: Discovering and Mitigating Spurious Correlations in Fine-Tuned Vision-Language Models
Fine-tuned vision-language models (VLMs) often capture spurious correlations between image features and textual attributes, resulting in degraded zero-shot performance at test time. Existing approaches for addressing spurious correlations (i) primarily operate at the global image-level rather than intervening directly on fine-grained image features and (ii) are predominantly designed for unimodal settings. In this work, we present RaVL, which takes a fine-grained perspective on VLM robustness by discovering and mitigating spurious correlations using local image features rather than operating at the global image level. Given a fine-tuned VLM, RaVL first discovers spurious correlations by leveraging a region-level clustering approach to identify precise image features contributing to zero-shot classification errors. Then, RaVL mitigates the identified spurious correlation with a novel region-aware loss function that enables the VLM to focus on relevant regions and ignore spurious relationships during fine-tuning. We evaluate RaVL on 654 VLMs with various model architectures, data domains, and learned spurious correlations. Our results show that RaVL accurately discovers (191% improvement over the closest baseline) and mitigates (8.2% improvement on worst-group image classification accuracy) spurious correlations. Qualitative evaluations on general-domain and medical-domain VLMs confirm our findings.
A New Federated Learning Framework Against Gradient Inversion Attacks
Federated Learning (FL) aims to protect data privacy by enabling clients to collectively train machine learning models without sharing their raw data. However, recent studies demonstrate that information exchanged during FL is subject to Gradient Inversion Attacks (GIA) and, consequently, a variety of privacy-preserving methods have been integrated into FL to thwart such attacks, such as Secure Multi-party Computing (SMC), Homomorphic Encryption (HE), and Differential Privacy (DP). Despite their ability to protect data privacy, these approaches inherently involve substantial privacy-utility trade-offs. By revisiting the key to privacy exposure in FL under GIA, which lies in the frequent sharing of model gradients that contain private data, we take a new perspective by designing a novel privacy preserve FL framework that effectively ``breaks the direct connection'' between the shared parameters and the local private data to defend against GIA. Specifically, we propose a Hypernetwork Federated Learning (HyperFL) framework that utilizes hypernetworks to generate the parameters of the local model and only the hypernetwork parameters are uploaded to the server for aggregation. Theoretical analyses demonstrate the convergence rate of the proposed HyperFL, while extensive experimental results show the privacy-preserving capability and comparable performance of HyperFL. Code is available at https://github.com/Pengxin-Guo/HyperFL.
Enhancing Fine-Tuning Based Backdoor Defense with Sharpness-Aware Minimization
Backdoor defense, which aims to detect or mitigate the effect of malicious triggers introduced by attackers, is becoming increasingly critical for machine learning security and integrity. Fine-tuning based on benign data is a natural defense to erase the backdoor effect in a backdoored model. However, recent studies show that, given limited benign data, vanilla fine-tuning has poor defense performance. In this work, we provide a deep study of fine-tuning the backdoored model from the neuron perspective and find that backdoorrelated neurons fail to escape the local minimum in the fine-tuning process. Inspired by observing that the backdoorrelated neurons often have larger norms, we propose FTSAM, a novel backdoor defense paradigm that aims to shrink the norms of backdoor-related neurons by incorporating sharpness-aware minimization with fine-tuning. We demonstrate the effectiveness of our method on several benchmark datasets and network architectures, where it achieves state-of-the-art defense performance. Overall, our work provides a promising avenue for improving the robustness of machine learning models against backdoor attacks.
Multi-View Active Fine-Grained Recognition
As fine-grained visual classification (FGVC) being developed for decades, great works related have exposed a key direction -- finding discriminative local regions and revealing subtle differences. However, unlike identifying visual contents within static images, for recognizing objects in the real physical world, discriminative information is not only present within seen local regions but also hides in other unseen perspectives. In other words, in addition to focusing on the distinguishable part from the whole, for efficient and accurate recognition, it is required to infer the key perspective with a few glances, e.g., people may recognize a "Benz AMG GT" with a glance of its front and then know that taking a look at its exhaust pipe can help to tell which year's model it is. In this paper, back to reality, we put forward the problem of active fine-grained recognition (AFGR) and complete this study in three steps: (i) a hierarchical, multi-view, fine-grained vehicle dataset is collected as the testbed, (ii) a simple experiment is designed to verify that different perspectives contribute differently for FGVC and different categories own different discriminative perspective, (iii) a policy-gradient-based framework is adopted to achieve efficient recognition with active view selection. Comprehensive experiments demonstrate that the proposed method delivers a better performance-efficient trade-off than previous FGVC methods and advanced neural networks.
On the Expressive Power of Geometric Graph Neural Networks
The expressive power of Graph Neural Networks (GNNs) has been studied extensively through the Weisfeiler-Leman (WL) graph isomorphism test. However, standard GNNs and the WL framework are inapplicable for geometric graphs embedded in Euclidean space, such as biomolecules, materials, and other physical systems. In this work, we propose a geometric version of the WL test (GWL) for discriminating geometric graphs while respecting the underlying physical symmetries: permutations, rotation, reflection, and translation. We use GWL to characterise the expressive power of geometric GNNs that are invariant or equivariant to physical symmetries in terms of distinguishing geometric graphs. GWL unpacks how key design choices influence geometric GNN expressivity: (1) Invariant layers have limited expressivity as they cannot distinguish one-hop identical geometric graphs; (2) Equivariant layers distinguish a larger class of graphs by propagating geometric information beyond local neighbourhoods; (3) Higher order tensors and scalarisation enable maximally powerful geometric GNNs; and (4) GWL's discrimination-based perspective is equivalent to universal approximation. Synthetic experiments supplementing our results are available at https://github.com/chaitjo/geometric-gnn-dojo
Visual Correspondence Hallucination
Given a pair of partially overlapping source and target images and a keypoint in the source image, the keypoint's correspondent in the target image can be either visible, occluded or outside the field of view. Local feature matching methods are only able to identify the correspondent's location when it is visible, while humans can also hallucinate its location when it is occluded or outside the field of view through geometric reasoning. In this paper, we bridge this gap by training a network to output a peaked probability distribution over the correspondent's location, regardless of this correspondent being visible, occluded, or outside the field of view. We experimentally demonstrate that this network is indeed able to hallucinate correspondences on pairs of images captured in scenes that were not seen at training-time. We also apply this network to an absolute camera pose estimation problem and find it is significantly more robust than state-of-the-art local feature matching-based competitors.
Seeing Through Their Eyes: Evaluating Visual Perspective Taking in Vision Language Models
Visual perspective-taking (VPT), the ability to understand the viewpoint of another person, enables individuals to anticipate the actions of other people. For instance, a driver can avoid accidents by assessing what pedestrians see. Humans typically develop this skill in early childhood, but it remains unclear whether the recently emerging Vision Language Models (VLMs) possess such capability. Furthermore, as these models are increasingly deployed in the real world, understanding how they perform nuanced tasks like VPT becomes essential. In this paper, we introduce two manually curated datasets, Isle-Bricks and Isle-Dots for testing VPT skills, and we use it to evaluate 12 commonly used VLMs. Across all models, we observe a significant performance drop when perspective-taking is required. Additionally, we find performance in object detection tasks is poorly correlated with performance on VPT tasks, suggesting that the existing benchmarks might not be sufficient to understand this problem. The code and the dataset will be available at https://sites.google.com/view/perspective-taking
Enhancing Diffusion Models with 3D Perspective Geometry Constraints
While perspective is a well-studied topic in art, it is generally taken for granted in images. However, for the recent wave of high-quality image synthesis methods such as latent diffusion models, perspective accuracy is not an explicit requirement. Since these methods are capable of outputting a wide gamut of possible images, it is difficult for these synthesized images to adhere to the principles of linear perspective. We introduce a novel geometric constraint in the training process of generative models to enforce perspective accuracy. We show that outputs of models trained with this constraint both appear more realistic and improve performance of downstream models trained on generated images. Subjective human trials show that images generated with latent diffusion models trained with our constraint are preferred over images from the Stable Diffusion V2 model 70% of the time. SOTA monocular depth estimation models such as DPT and PixelFormer, fine-tuned on our images, outperform the original models trained on real images by up to 7.03% in RMSE and 19.3% in SqRel on the KITTI test set for zero-shot transfer.
LoRA-Contextualizing Adaptation of Large Multimodal Models for Long Document Understanding
Large multimodal models (LMMs) have recently shown great progress in text-rich image understanding, yet they still struggle with complex, multi-page, visually-rich documents. Traditional methods using document parsers for retrieval-augmented generation suffer from performance and efficiency limitations, while directly presenting all pages to LMMs leads to inefficiencies, especially with lengthy documents. In this work, we present a novel framework named LoRA-Contextualizing Adaptation of Large multimodal models (LoCAL), which broadens the capabilities of any LMM to support long-document understanding. We demonstrate that LMMs can effectively serve as multimodal retrievers, fetching relevant pages to answer user questions based on these pages. LoCAL is implemented with two specific LMM adapters: one for evidence page retrieval and another for question answering. Empirical results show state-of-the-art performance on public benchmarks, demonstrating the effectiveness of LoCAL.
BOAT: Bilateral Local Attention Vision Transformer
Vision Transformers achieved outstanding performance in many computer vision tasks. Early Vision Transformers such as ViT and DeiT adopt global self-attention, which is computationally expensive when the number of patches is large. To improve efficiency, recent Vision Transformers adopt local self-attention mechanisms, where self-attention is computed within local windows. Despite the fact that window-based local self-attention significantly boosts efficiency, it fails to capture the relationships between distant but similar patches in the image plane. To overcome this limitation of image-space local attention, in this paper, we further exploit the locality of patches in the feature space. We group the patches into multiple clusters using their features, and self-attention is computed within every cluster. Such feature-space local attention effectively captures the connections between patches across different local windows but still relevant. We propose a Bilateral lOcal Attention vision Transformer (BOAT), which integrates feature-space local attention with image-space local attention. We further integrate BOAT with both Swin and CSWin models, and extensive experiments on several benchmark datasets demonstrate that our BOAT-CSWin model clearly and consistently outperforms existing state-of-the-art CNN models and vision Transformers.
Mitigating Perspective Distortion-induced Shape Ambiguity in Image Crops
Objects undergo varying amounts of perspective distortion as they move across a camera's field of view. Models for predicting 3D from a single image often work with crops around the object of interest and ignore the location of the object in the camera's field of view. We note that ignoring this location information further exaggerates the inherent ambiguity in making 3D inferences from 2D images and can prevent models from even fitting to the training data. To mitigate this ambiguity, we propose Intrinsics-Aware Positional Encoding (KPE), which incorporates information about the location of crops in the image and camera intrinsics. Experiments on three popular 3D-from-a-single-image benchmarks: depth prediction on NYU, 3D object detection on KITTI & nuScenes, and predicting 3D shapes of articulated objects on ARCTIC, show the benefits of KPE.
Perspective-Aware Reasoning in Vision-Language Models via Mental Imagery Simulation
We present a framework for perspective-aware reasoning in vision-language models (VLMs) through mental imagery simulation. Perspective-taking, the ability to perceive an environment or situation from an alternative viewpoint, is a key benchmark for human-level visual understanding, essential for environmental interaction and collaboration with autonomous agents. Despite advancements in spatial reasoning within VLMs, recent research has shown that modern VLMs significantly lack perspective-aware reasoning capabilities and exhibit a strong bias toward egocentric interpretations. To bridge the gap between VLMs and human perception, we focus on the role of mental imagery, where humans perceive the world through abstracted representations that facilitate perspective shifts. Motivated by this, we propose a framework for perspective-aware reasoning, named Abstract Perspective Change (APC), that effectively leverages vision foundation models, such as object detection, segmentation, and orientation estimation, to construct scene abstractions and enable perspective transformations. Our experiments on synthetic and real-image benchmarks, compared with various VLMs, demonstrate significant improvements in perspective-aware reasoning with our framework, further outperforming fine-tuned spatial reasoning models and novel-view-synthesis-based approaches.
360+x: A Panoptic Multi-modal Scene Understanding Dataset
Human perception of the world is shaped by a multitude of viewpoints and modalities. While many existing datasets focus on scene understanding from a certain perspective (e.g. egocentric or third-person views), our dataset offers a panoptic perspective (i.e. multiple viewpoints with multiple data modalities). Specifically, we encapsulate third-person panoramic and front views, as well as egocentric monocular/binocular views with rich modalities including video, multi-channel audio, directional binaural delay, location data and textual scene descriptions within each scene captured, presenting comprehensive observation of the world. Figure 1 offers a glimpse of all 28 scene categories of our 360+x dataset. To the best of our knowledge, this is the first database that covers multiple viewpoints with multiple data modalities to mimic how daily information is accessed in the real world. Through our benchmark analysis, we presented 5 different scene understanding tasks on the proposed 360+x dataset to evaluate the impact and benefit of each data modality and perspective in panoptic scene understanding. We hope this unique dataset could broaden the scope of comprehensive scene understanding and encourage the community to approach these problems from more diverse perspectives.
GIVL: Improving Geographical Inclusivity of Vision-Language Models with Pre-Training Methods
A key goal for the advancement of AI is to develop technologies that serve the needs not just of one group but of all communities regardless of their geographical region. In fact, a significant proportion of knowledge is locally shared by people from certain regions but may not apply equally in other regions because of cultural differences. If a model is unaware of regional characteristics, it may lead to performance disparity across regions and result in bias against underrepresented groups. We propose GIVL, a Geographically Inclusive Vision-and-Language Pre-trained model. There are two attributes of geo-diverse visual concepts which can help to learn geo-diverse knowledge: 1) concepts under similar categories have unique knowledge and visual characteristics, 2) concepts with similar visual features may fall in completely different categories. Motivated by the attributes, we design new pre-training objectives Image Knowledge Matching (IKM) and Image Edit Checking (IEC) to pre-train GIVL. Compared with similar-size models pre-trained with similar scale of data, GIVL achieves state-of-the-art (SOTA) and more balanced performance on geo-diverse V&L tasks.