bert-finetuned-ner / README.md
paopao0226
update model card README.md
3c4611a
|
raw
history blame
2.18 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - wikiann
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wikiann
          type: wikiann
          config: ace
          split: validation
          args: ace
        metrics:
          - name: Precision
            type: precision
            value: 0.20394736842105263
          - name: Recall
            type: recall
            value: 0.2897196261682243
          - name: F1
            type: f1
            value: 0.23938223938223938
          - name: Accuracy
            type: accuracy
            value: 0.817741935483871

bert-finetuned-ner

This model is a fine-tuned version of bert-base-cased on the wikiann dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6372
  • Precision: 0.2039
  • Recall: 0.2897
  • F1: 0.2394
  • Accuracy: 0.8177

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 13 0.7383 0.1463 0.1121 0.1270 0.7737
No log 2.0 26 0.6586 0.1618 0.2056 0.1811 0.8075
No log 3.0 39 0.6372 0.2039 0.2897 0.2394 0.8177

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3