File size: 21,998 Bytes
795c706 df796ec 795c706 df796ec 795c706 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
import math
from os.path import exists
from tqdm import trange
from modules import scripts, shared, processing, sd_samplers, script_callbacks, rng
from modules import devices, prompt_parser, sd_models, extra_networks
import modules.images as images
import k_diffusion
import gradio as gr
import numpy as np
from PIL import Image, ImageEnhance
import torch
import importlib
def safe_import(import_name, pkg_name = None):
try:
__import__(import_name)
except Exception:
pkg_name = pkg_name or import_name
import pip
if hasattr(pip, 'main'):
pip.main(['install', pkg_name])
else:
pip._internal.main(['install', pkg_name])
__import__(import_name)
safe_import('kornia')
safe_import('omegaconf')
safe_import('pathlib')
from omegaconf import DictConfig, OmegaConf
from pathlib import Path
import kornia
from skimage import exposure
config_path = Path(__file__).parent.resolve() / '../config.yaml'
class CustomHiresFix(scripts.Script):
def __init__(self):
super().__init__()
if not exists(config_path):
open(config_path, 'w').close()
self.config: DictConfig = OmegaConf.load(config_path)
self.callback_set = False
self.orig_clip_skip = None
self.orig_cfg = None
self.p: processing.StableDiffusionProcessing = None
self.pp = None
self.sampler = []
self.cond = None
self.uncond = None
self.step = None
self.tv = None
self.width = None
self.height = None
self.use_cn = False
self.external_code = None
self.cn_image = None
self.cn_units = []
def title(self):
return "Custom Hires Fix"
def show(self, is_img2img):
return scripts.AlwaysVisible
def ui(self, is_img2img):
with gr.Accordion(label='Custom hires fix', open=False):
enable = gr.Checkbox(label='Enable extension', value=self.config.get('enable', False))
with gr.Row():
width = gr.Slider(minimum=512, maximum=2048, step=8,
label="Upscale width to",
value=self.config.get('width', 1024), allow_flagging='never', show_progress=False)
height = gr.Slider(minimum=512, maximum=2048, step=8,
label="Upscale height to",
value=self.config.get('height', 0), allow_flagging='never', show_progress=False)
steps = gr.Slider(minimum=8, maximum=25, step=1,
label="Steps",
value=self.config.get('steps', 15))
with gr.Row():
prompt = gr.Textbox(label='Prompt for upscale (added to generation prompt)',
placeholder='Leave empty for using generation prompt',
value=self.config.get('prompt', ''))
with gr.Row():
negative_prompt = gr.Textbox(label='Negative prompt for upscale (replaces generation prompt)',
placeholder='Leave empty for using generation negative prompt',
value=self.config.get('negative_prompt', ''))
with gr.Row():
first_upscaler = gr.Dropdown([*[x.name for x in shared.sd_upscalers
if x.name not in ['None', 'Nearest', 'LDSR']]],
label='First upscaler',
value=self.config.get('first_upscaler', 'R-ESRGAN 4x+'))
second_upscaler = gr.Dropdown([*[x.name for x in shared.sd_upscalers
if x.name not in ['None', 'Nearest', 'LDSR']]],
label='Second upscaler',
value=self.config.get('second_upscaler', 'R-ESRGAN 4x+'))
with gr.Row():
first_latent = gr.Slider(minimum=0.0, maximum=1.0, step=0.01,
label="Latent upscale ratio (1)",
value=self.config.get('first_latent', 0.3))
second_latent = gr.Slider(minimum=0.0, maximum=1.0, step=0.01,
label="Latent upscale ratio (2)",
value=self.config.get('second_latent', 0.1))
with gr.Row():
filter = gr.Dropdown(['Noise sync (sharp)', 'Morphological (smooth)', 'Combined (balanced)'],
label='Filter mode',
value=self.config.get('filter', 'Noise sync (sharp)'))
strength = gr.Slider(minimum=1.0, maximum=3.5, step=0.1, label="Generation strength",
value=self.config.get('strength', 2.0))
denoise_offset = gr.Slider(minimum=-0.05, maximum=0.15, step=0.01,
label="Denoise offset",
value=self.config.get('denoise_offset', 0.05))
with gr.Accordion(label='Extra', open=False):
with gr.Row():
filter_offset = gr.Slider(minimum=-1.0, maximum=1.0, step=0.1,
label="Filter offset (higher - smoother)",
value=self.config.get('filter_offset', 0.0))
clip_skip = gr.Slider(minimum=0, maximum=5, step=1,
label="Clip skip for upscale (0 - not change)",
value=self.config.get('clip_skip', 0))
with gr.Row():
start_control_at = gr.Slider(minimum=0.0, maximum=0.7, step=0.01,
label="CN start for enabled units",
value=self.config.get('start_control_at', 0.0))
cn_ref = gr.Checkbox(label='Use last image for reference', value=self.config.get('cn_ref', False))
with gr.Row():
sampler = gr.Dropdown(['Restart', 'DPM++ 2M', 'DPM++ 2M Karras', 'DPM++ 2M SDE', 'DPM++ 2M SDE Karras', 'DPM++ 2M SDE Heun', 'DPM++ 2M SDE Heun Karras', 'DPM++ 3M SDE', 'DPM++ 3M SDE Karras', 'Restart + DPM++ 3M SDE'],
label='Sampler',
value=self.config.get('sampler', 'DPM++ 2M Karras'))
if is_img2img:
width.change(fn=lambda x: gr.update(value=0), inputs=width, outputs=height)
height.change(fn=lambda x: gr.update(value=0), inputs=height, outputs=width)
else:
width.change(fn=lambda x: gr.update(value=0), inputs=width, outputs=height)
height.change(fn=lambda x: gr.update(value=0), inputs=height, outputs=width)
ui = [enable, width, height, steps, first_upscaler, second_upscaler, first_latent, second_latent, prompt,
negative_prompt, strength, filter, filter_offset, denoise_offset, clip_skip, sampler, cn_ref, start_control_at]
for elem in ui:
setattr(elem, "do_not_save_to_config", True)
return ui
def process(self, p, *args, **kwargs):
self.p = p
self.cn_units = []
try:
self.external_code = importlib.import_module('extensions.sd-webui-controlnet.scripts.external_code', 'external_code')
cn_units = self.external_code.get_all_units_in_processing(p)
for unit in cn_units:
self.cn_units += [unit]
self.use_cn = len(self.cn_units) > 0
except ImportError:
self.use_cn = False
def postprocess_image(self, p, pp: scripts.PostprocessImageArgs,
enable, width, height, steps, first_upscaler, second_upscaler, first_latent, second_latent, prompt,
negative_prompt, strength, filter, filter_offset, denoise_offset, clip_skip, sampler, cn_ref, start_control_at
):
if not enable:
return
self.step = 0
self.pp = pp
self.config.width = width
self.config.height = height
self.config.prompt = prompt.strip()
self.config.negative_prompt = negative_prompt.strip()
self.config.steps = steps
self.config.first_upscaler = first_upscaler
self.config.second_upscaler = second_upscaler
self.config.first_latent = first_latent
self.config.second_latent = second_latent
self.config.strength = strength
self.config.filter = filter
self.config.filter_offset = filter_offset
self.config.denoise_offset = denoise_offset
self.config.clip_skip = clip_skip
self.config.sampler = sampler
self.config.cn_ref = cn_ref
self.config.start_control_at = start_control_at
self.orig_clip_skip = shared.opts.CLIP_stop_at_last_layers
self.orig_cfg = p.cfg_scale
if clip_skip > 0:
shared.opts.CLIP_stop_at_last_layers = clip_skip
if 'Restart' in self.config.sampler:
self.sampler = sd_samplers.create_sampler('Restart', p.sd_model)
else:
self.sampler = sd_samplers.create_sampler(sampler, p.sd_model)
def denoise_callback(params: script_callbacks.CFGDenoiserParams):
if params.sampling_step > 0:
p.cfg_scale = self.orig_cfg
if self.step == 1 and self.config.strength != 1.0:
params.sigma[-1] = params.sigma[0] * (1 - (1 - self.config.strength) / 100)
elif self.step == 2 and self.config.filter == 'Noise sync (sharp)':
params.sigma[-1] = params.sigma[0] * (1 - (self.tv - 1 + self.config.filter_offset - (self.config.denoise_offset * 5)) / 50)
elif self.step == 2 and self.config.filter == 'Combined (balanced)':
params.sigma[-1] = params.sigma[0] * (1 - (self.tv - 1 + self.config.filter_offset - (self.config.denoise_offset * 5)) / 100)
if self.callback_set is False:
script_callbacks.on_cfg_denoiser(denoise_callback)
self.callback_set = True
_, loras_act = extra_networks.parse_prompt(prompt)
extra_networks.activate(p, loras_act)
_, loras_deact = extra_networks.parse_prompt(negative_prompt)
extra_networks.deactivate(p, loras_deact)
self.cn_image = pp.image
with devices.autocast():
shared.state.nextjob()
x = self.gen(pp.image)
shared.state.nextjob()
x = self.filter(x)
shared.opts.CLIP_stop_at_last_layers = self.orig_clip_skip
sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
pp.image = x
extra_networks.deactivate(p, loras_act)
OmegaConf.save(self.config, config_path)
def enable_cn(self, image: np.ndarray):
for unit in self.cn_units:
if unit.model != 'None':
unit.guidance_start = self.config.start_control_at if unit.enabled else unit.guidance_start
unit.processor_res = min(image.shape[0], image.shape[0])
unit.enabled = True
if unit.image is None:
unit.image = image
self.p.width = image.shape[1]
self.p.height = image.shape[0]
self.external_code.update_cn_script_in_processing(self.p, self.cn_units)
for script in self.p.scripts.alwayson_scripts:
if script.title().lower() == 'controlnet':
script.controlnet_hack(self.p)
def process_prompt(self):
prompt = self.p.prompt.strip().split('AND', 1)[0]
if self.config.prompt != '':
prompt = f'{prompt} {self.config.prompt}'
if self.config.negative_prompt != '':
negative_prompt = self.config.negative_prompt
else:
negative_prompt = self.p.negative_prompt.strip()
with devices.autocast():
if self.width is not None and self.height is not None and hasattr(prompt_parser, 'SdConditioning'):
c = prompt_parser.SdConditioning([prompt], False, self.width, self.height)
uc = prompt_parser.SdConditioning([negative_prompt], False, self.width, self.height)
else:
c = [prompt]
uc = [negative_prompt]
self.cond = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, c, self.config.steps)
self.uncond = prompt_parser.get_learned_conditioning(shared.sd_model, uc, self.config.steps)
def gen(self, x):
self.step = 1
ratio = x.width / x.height
self.width = self.config.width if self.config.width > 0 else int(self.config.height * ratio)
self.height = self.config.height if self.config.height > 0 else int(self.config.width / ratio)
self.width = int((self.width - x.width) // 2 + x.width)
self.height = int((self.height - x.height) // 2 + x.height)
sd_models.apply_token_merging(self.p.sd_model, self.p.get_token_merging_ratio(for_hr=True) / 2)
if self.use_cn:
self.enable_cn(np.array(self.cn_image.resize((self.width, self.height))))
with devices.autocast(), torch.inference_mode():
self.process_prompt()
x_big = None
if self.config.first_latent > 0:
image = np.array(x).astype(np.float32) / 255.0
image = np.moveaxis(image, 2, 0)
decoded_sample = torch.from_numpy(image)
decoded_sample = decoded_sample.to(shared.device).to(devices.dtype_vae)
decoded_sample = 2.0 * decoded_sample - 1.0
encoded_sample = shared.sd_model.encode_first_stage(decoded_sample.unsqueeze(0).to(devices.dtype_vae))
sample = shared.sd_model.get_first_stage_encoding(encoded_sample)
x_big = torch.nn.functional.interpolate(sample, (self.height // 8, self.width // 8), mode='nearest')
if self.config.first_latent < 1:
x = images.resize_image(0, x, self.width, self.height,
upscaler_name=self.config.first_upscaler)
image = np.array(x).astype(np.float32) / 255.0
image = np.moveaxis(image, 2, 0)
decoded_sample = torch.from_numpy(image)
decoded_sample = decoded_sample.to(shared.device).to(devices.dtype_vae)
decoded_sample = 2.0 * decoded_sample - 1.0
encoded_sample = shared.sd_model.encode_first_stage(decoded_sample.unsqueeze(0).to(devices.dtype_vae))
sample = shared.sd_model.get_first_stage_encoding(encoded_sample)
else:
sample = x_big
if x_big is not None and self.config.first_latent != 1:
sample = (sample * (1 - self.config.first_latent)) + (x_big * self.config.first_latent)
image_conditioning = self.p.img2img_image_conditioning(decoded_sample, sample)
noise = torch.zeros_like(sample)
noise = kornia.augmentation.RandomGaussianNoise(mean=0.0, std=1.0, p=1.0)(noise)
steps = int(max(((self.p.steps - self.config.steps) / 2) + self.config.steps, self.config.steps))
self.p.denoising_strength = 0.45 + self.config.denoise_offset * 0.2
self.p.cfg_scale = self.orig_cfg + 0
def denoiser_override(n):
sigmas = k_diffusion.sampling.get_sigmas_polyexponential(n, 0.01, 15, 0.5, devices.device)
return sigmas
self.p.rng = rng.ImageRNG(sample.shape[1:], self.p.seeds, subseeds=self.p.subseeds,
subseed_strength=self.p.subseed_strength,
seed_resize_from_h=self.p.seed_resize_from_h, seed_resize_from_w=self.p.seed_resize_from_w)
self.p.sampler_noise_scheduler_override = denoiser_override
self.p.batch_size = 1
sample = self.sampler.sample_img2img(self.p, sample.to(devices.dtype), noise, self.cond, self.uncond,
steps=steps, image_conditioning=image_conditioning).to(devices.dtype_vae)
b, c, w, h = sample.size()
self.tv = kornia.losses.TotalVariation()(sample).mean() / (w * h)
devices.torch_gc()
decoded_sample = processing.decode_first_stage(shared.sd_model, sample)
if math.isnan(decoded_sample.min()):
devices.torch_gc()
sample = torch.clamp(sample, -3, 3)
decoded_sample = processing.decode_first_stage(shared.sd_model, sample)
decoded_sample = torch.clamp((decoded_sample + 1.0) / 2.0, min=0.0, max=1.0).squeeze()
x_sample = 255. * np.moveaxis(decoded_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
image = Image.fromarray(x_sample)
return image
def filter(self, x):
if 'Restart' == self.config.sampler:
self.sampler = sd_samplers.create_sampler('Restart', shared.sd_model)
elif 'Restart + DPM++ 3M SDE' == self.config.sampler:
self.sampler = sd_samplers.create_sampler('DPM++ 3M SDE', shared.sd_model)
self.step = 2
ratio = x.width / x.height
self.width = self.config.width if self.config.width > 0 else int(self.config.height * ratio)
self.height = self.config.height if self.config.height > 0 else int(self.config.width / ratio)
sd_models.apply_token_merging(self.p.sd_model, self.p.get_token_merging_ratio(for_hr=True))
if self.use_cn:
self.cn_image = x if self.config.cn_ref else self.cn_image
self.enable_cn(np.array(self.cn_image.resize((self.width, self.height))))
with devices.autocast(), torch.inference_mode():
self.process_prompt()
x_big = None
if self.config.second_latent > 0:
image = np.array(x).astype(np.float32) / 255.0
image = np.moveaxis(image, 2, 0)
decoded_sample = torch.from_numpy(image)
decoded_sample = decoded_sample.to(shared.device).to(devices.dtype_vae)
decoded_sample = 2.0 * decoded_sample - 1.0
encoded_sample = shared.sd_model.encode_first_stage(decoded_sample.unsqueeze(0).to(devices.dtype_vae))
sample = shared.sd_model.get_first_stage_encoding(encoded_sample)
x_big = torch.nn.functional.interpolate(sample, (self.height // 8, self.width // 8), mode='nearest')
if self.config.second_latent < 1:
x = images.resize_image(0, x, self.width, self.height, upscaler_name=self.config.second_upscaler)
image = np.array(x).astype(np.float32) / 255.0
image = np.moveaxis(image, 2, 0)
decoded_sample = torch.from_numpy(image)
decoded_sample = decoded_sample.to(shared.device).to(devices.dtype_vae)
decoded_sample = 2.0 * decoded_sample - 1.0
encoded_sample = shared.sd_model.encode_first_stage(decoded_sample.unsqueeze(0).to(devices.dtype_vae))
sample = shared.sd_model.get_first_stage_encoding(encoded_sample)
else:
sample = x_big
if x_big is not None and self.config.second_latent != 1:
sample = (sample * (1 - self.config.second_latent)) + (x_big * self.config.second_latent)
image_conditioning = self.p.img2img_image_conditioning(decoded_sample, sample)
noise = torch.zeros_like(sample)
noise = kornia.augmentation.RandomGaussianNoise(mean=0.0, std=1.0, p=1.0)(noise)
self.p.denoising_strength = 0.45 + self.config.denoise_offset
self.p.cfg_scale = self.orig_cfg + 3
if self.config.filter == 'Morphological (smooth)':
noise_mask = kornia.morphology.gradient(sample, torch.ones(5, 5).to(devices.device))
noise_mask = kornia.filters.median_blur(noise_mask, (3, 3))
noise_mask = (0.1 + noise_mask / noise_mask.max()) * (max(
(1.75 - (self.tv - 1) * 4), 1.75) - self.config.filter_offset)
noise = noise * noise_mask
elif self.config.filter == 'Combined (balanced)':
noise_mask = kornia.morphology.gradient(sample, torch.ones(5, 5).to(devices.device))
noise_mask = kornia.filters.median_blur(noise_mask, (3, 3))
noise_mask = (0.1 + noise_mask / noise_mask.max()) * (max(
(1.75 - (self.tv - 1) / 2), 1.75) - self.config.filter_offset)
noise = noise * noise_mask
def denoiser_override(n):
return k_diffusion.sampling.get_sigmas_polyexponential(n, 0.01, 7, 0.5, devices.device)
self.p.sampler_noise_scheduler_override = denoiser_override
self.p.batch_size = 1
samples = self.sampler.sample_img2img(self.p, sample.to(devices.dtype), noise, self.cond, self.uncond,
steps=self.config.steps, image_conditioning=image_conditioning
).to(devices.dtype_vae)
devices.torch_gc()
self.p.iteration += 1
decoded_sample = processing.decode_first_stage(shared.sd_model, samples)
if math.isnan(decoded_sample.min()):
devices.torch_gc()
samples = torch.clamp(samples, -3, 3)
decoded_sample = processing.decode_first_stage(shared.sd_model, samples)
decoded_sample = torch.clamp((decoded_sample + 1.0) / 2.0, min=0.0, max=1.0).squeeze()
x_sample = 255. * np.moveaxis(decoded_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
image = Image.fromarray(x_sample)
return image |