--- library_name: transformers base_model: allenai/biomed_roberta_base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BioMedRoBERTa-finetuned-ner-pablo-just-classifier results: [] --- # BioMedRoBERTa-finetuned-ner-pablo-just-classifier This model is a fine-tuned version of [allenai/biomed_roberta_base](https://huggingface.co/allenai/biomed_roberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1220 - Precision: 0.6776 - Recall: 0.6935 - F1: 0.6854 - Accuracy: 0.9668 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.1 - train_batch_size: 512 - eval_batch_size: 512 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 23 | 0.2632 | 0.5303 | 0.6291 | 0.5755 | 0.9548 | | No log | 2.0 | 46 | 0.1581 | 0.6207 | 0.6712 | 0.6450 | 0.9630 | | No log | 3.0 | 69 | 0.1357 | 0.6494 | 0.6856 | 0.6670 | 0.9652 | | No log | 4.0 | 92 | 0.1245 | 0.6658 | 0.6919 | 0.6786 | 0.9664 | | No log | 5.0 | 115 | 0.1220 | 0.6776 | 0.6935 | 0.6854 | 0.9668 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1